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Abstract—Semi-supervised cluster ensemble usually introduces a small amount of supervision in the first stage of cluster ensemble,
i.e. ensemble generation, by performing many runs of semi-supervised clustering algorithms. However, it is neither efficient in terms of
computational complexity, nor flexible in a dynamic learning environment where limited supervision changes over time. In this work we
propose a new framework which generates base partitions in an unsupervised manner and attributes different weights to each cluster
of the base partitions. The weighting scheme considers both the internal validation measures of clustering and the degrees of
satisfaction of pairwise constraints. A weighted co-association matrix based consensus approach is then applied to achieve a final
partition. To handle high-dimensional data, we generate base partitions using k-means with both random sampling and random
subspace techniques. The new framework retains a high accuracy, and is efficient since it avoids performing semi-supervised
clustering in ensemble generation and the complexity of the weighting scheme is independent of the number of instances in a dynamic
environment. It is more adaptive than the traditional approach because it does not require rerunning semi-supervised clustering
algorithms when the limited supervision changes. Empirical results on twelve datasets demonstrate that it is also more robust to noisy
constraints.

Index Terms—Cluster ensemble, semi-supervised clustering, pairwise constraint, k-means.

F

1 INTRODUCTION

C LUSTERING ensemble, also known as consensus clus-
tering, has been emerging as a promising tool for com-

bining results of different runs of homogeneous or hetero-
geneous clustering algorithms which provide different yet
consistent partitions for the same dataset [1], [2], [3]. Using
a consensus function, cluster ensemble aims to achieve a
consensus among these partitions and outperforms each
individual clustering in the ensemble in terms of both
accuracy and stability [4].

In this work, we mainly focus on semi-supervised cluster
ensemble, which incorporates semi-supervised clustering
(also known as constrained clustering) with cluster en-
semble together. Previous studies have demonstrated that
ensemble approaches can enhance the performance of semi-
supervised clustering algorithms [2], [3], [5], [6]. General-
ly speaking, there are two basic approaches to engage a
relatively small amount of supervision, typically pairwise
instance-level constraints, in cluster ensemble: (1) a very
natural and common way is to bring in supervision in
cluster ensemble generation step, that is, generate a large
library of clusterings using semi-supervised clustering al-
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gorithms with limited supervision [5]. For convenience of
discussion, we call it “Constraint-first” approach; (2) perfor-
m ensemble generation using clustering algorithms without
any supervision, and then introduce limited supervision
in the consensus function [6], [7]. We call it “Cluster-first”
approach. It is often presumed that ensemble members or
base partitions produced by semi-supervised clustering al-
gorithms are more accurate than those generated by cluster-
ing algorithms without any supervision, however, there are
several disadvantages of the “Constraint-first” approach.

First, it is often inefficient to perform many runs of semi-
supervised clusterings on a large dataset. Compared with
typical clustering algorithms, semi-supervised clustering al-
gorithms are much more complicated, yielding additional
time cost of involving supervision. Further, involving the
supervision into the clustering algorithms may raise several
serious difficulties [8], [9], [10]. For example, some popular
methods such as COP-Kmeans are easily over-constrained
and may not converge [9].

Second, generating a large library of semi-supervised
clusterings is inflexible especially when the supervision
changes. The limited supervision is usually provided in
the forms of priori knowledge or user feedbacks. With
respect to the former, since multiple users probably have
multiple views of data, the priori knowledge provided by
them can be different. On the other hand, user feedback
is likely to increase or even change over time. In these
cases, “Constraint-first” approach requires rerunning the
semi-supervised clustering algorithms using the updated
supervision.

Third, user-provided constraint set may be accompa-
nied by some noise, i.e. noisy constraints. However, semi-
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supervised clustering algorithms are usually susceptible to
noisy constraints. Besides, it has been observed that even
the constraints are generated from the ground-truth without
any level of noise, they can also have ill effects that decrease
the performances of clustering algorithms [8].

Few studies concentrated on the comparison of the
“Constraint-first” approach and “Cluster-first” approach,
nor did they concern about the potential disadvantages
of the “Constraint-first” approach. For the “Cluster-first”
approach, the main question is how to incorporate super-
vision into the consensus function. Our recent study [7]
demonstrated that using an ensemble selection method, the
“Cluster-first” approach can achieve even higher accuracy
than “Constraint-first” approach. The main idea is to select
base partitions which agree most with the given constraints
from the unsupervised clustering library while retaining
their diversity and quality. This preliminary result provides
a way to improve the computational efficiency of semi-
supervised cluster ensemble. However, the problem formu-
lation of the framework requires defining quality and di-
versity of base partitions, which needs measure similarities
between base partitions. Besides, since the maximization of
the objective function for ensemble selection is proven to
be NP-hard, we had to adopt a greedy forward selection
strategy.

Assuming that a unique ground-truth partition exists,
a very recent study suggests that only the base clusterings
(or base partitions) close to this ground-truth partition are
meaningful to the goal of finding a consensus, no matter
how diverse they are [11]. It also indicates that incorporating
prior knowledge can help find those base partitions that are
close to the ground-truth partition. Another recent study on
weighted co-association matrix based consensus clustering
proves that careful choices of weighting scheme for the co-
association matrix is able to help improve the quality of
consensus clustering when using a small library of base
partitions [12]. In [13], the authors propose implementing
Bayesian Model Averaging (BMA) [14] in model selection
for model-based clustering and taking a weighted aver-
age of the candidate models. The co-association matrix is
viewed as the quantity of interest in BMA, which can mea-
sure the probability that each pair of observations belong to
the same cluster. Thus, the weighted co-association matrix
can represents an average of the posterior distributions
under each candidate model weighted by the corresponding
posterior model probabilities.

Inspired by the aforementioned studies on cluster en-
semble, in the current work we further propose a “Cluster-
first” semi-supervised cluster ensemble framework based
on a new weighting scheme of base partitions. Suppose that
each partition consists of more than one cluster, the new
framework adopts k-means to generate base partitions and
attributes different weights to each cluster of base partitions.
The weighting scheme considers both the internal validation
measures of clustering and the degrees of satisfaction of
pairwise constraints. Within the BMA paradigm, the clusters
can be viewed as candidate models, and the internal vali-
dation measurement of clusters can represent the marginal
likelihood of the cluster, while the consistency with pair-
wise constraints measure the posterior probability of the
cluster. A weighted co-association matrix based consensus

approach is then applied to achieve a final partition. We
call this method WEighted Consensus of Random k-means
ensemble (WECR k-means). The motivation is to improve the
computation efficiency and robustness of semi-supervised
cluster ensemble while retaining a high accuracy with limit-
ed supervision. The main contributions are as follows:

• We propose a weighted consensus framework for
semi-supervised clustering ensemble. The base parti-
tions are generated in an unsupervised learning man-
ner, while the supervision in the form of pairwise
constraints is utilized to evaluate and weight each
cluster of the base partitions. Compared with the
“Constraint-first” approach, the framework avoid-
s performing many runs of time-consuming semi-
supervised clustering and is much more compu-
tational efficient. Moreover, it is more adaptive to
limited supervision as it does not require rerunning
a large library of unsupervised or semi-supervised
clusterings when the supervision changes.

• To handle the high-dimensional data, we generate
base partitions using k-means with both random sam-
pling and random subspace techniques. K-means is
linear in the number of instances, dimensions and
clusters, and thus is scalable to large datasets. Us-
ing both random sampling and random subspace
techniques not only guarantee the diversity of base
partitions, but also ease the curse of dimensionality
by clustering in a low-dimensional feature space.

• With different level of supervision as well as the
presence of noise provided by pairwise constraints,
we empirically demonstrate that the weighted con-
sensus of many unsupervised clusterings can outper-
form the consensus of many semi-supervised clus-
terings on the qualities of final consensus in three
aspects: (1) among all the eight compared algorithms,
it achieves the best average qualities over twelve
datasets in each case of different sizes of constraint
set; (2) it shows less fluctuations with the change of
constraints; and (3) it is the most robust with respect
to different levels of noisy constraints while keeping
high qualities.

The rest of the paper is organized as follows. Sec-
tion 2 surveys related work of unsupervised and semi-
supervised clustering ensemble. Section 3 describes the pro-
posed framework. Section 4 presents the experiments under
different settings of constraints, and demonstrates the merits
of the new framework. Section 5 summarizes the work.

2 RELATED WORKS

In this section, we give a brief review of existing work on
cluster ensemble and semi-supervised cluster ensemble.

2.1 Cluster Ensemble

As a state-of-the-art approach, ensemble learning, which
generates multiple models and then combines them to
a single consensus solution, not only has attracted great
attentions in machine learning community, but has been
widely used in real applications for its good properties of
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robustness and accuracy. Generally, clustering ensemble ap-
proaches consist of two main steps, i.e. ensemble generation
and finding a consensus. To obtain a good ensemble, diverse
partition solutions need to be generated. Previous studies
have provided many different ways of ensemble generation,
such as performing heterogeneous clustering algorithms
[4], changing initialization or other parameters for homo-
geneous clustering algorithms [15], [16], manipulating the
original data by projection onto different subspaces [16], [17]
and partition into different subsets [18], [19]. To combine the
base partitions to get a final solution, various approaches are
proposed, e.g. relabeling and voting [18], [20], co-association
matrix [15], [21], graph partitioning [4], cumulative voting
[22], mixture models [23], Bayesian cluster ensemble [24],
and so on.

Generally, cluster ensemble or consensus clustering look
for a consensus solution which is the closest to all the base
partitions, that is, an ’average’ solution which agrees the
most with all the given base partitions. Under the assump-
tion that a base partition λi is a noisy version of the ground
truth partition λ∗ of the data set X = {x1,x2...xN}, A. P.
Topchy, M. H. C. Law, A. K. Jain, and A. L. N. Fred [25] pro-
vided a rigorous proof and justification of why a clustering
ensemble can converge to a high quality consensus solution
from two perspectives. First, they proved that voting with
re-labeling method can detect the true partition λ∗ with a
probability that approaches to 1 as the size of ensemble
increases. Second, when a consensus function is regarded as
finding a mean partition of base partitions, the probability
of failing to find the true partition also drops exponentially
as the size of ensemble increases.

Note that those justifications of asymptotic convergence
properties are based on a sufficiently large ensemble and
base partitions are treated equally. However, the ensemble
size is always finite and hence some base partitions which
are far away from the ground-truth should be suppressed
in the consensus function. Attributing different weights to
base partitions or performing ensemble selection based on
a certain criterion are then regarded as reasonable. Among
the criteria, the tradeoff between diversity and quality of
base partitions, also known as bias-variance tradeoff, is
directly extended from ensemble classification. Diversity of
the ensemble members, i.e. the disagreement of the base
partitions on the partitioning of the data, is certainly a
prerequisite for ensemble clustering. If ensemble members
resemble each other, the consensus is merely a replication.
Enhancing diversity can reduce the redundancy. For this
reason, diversity as well as quality has been regarded as
a key factor in ensemble clustering, and is widely used as
an important metric to improve the consensus clustering by
performing ensemble selection with an objective function
consisting of quality and diversity [26], [27], [28], [29],
[30]. And some other studies assigned varying weights to
base partitions in the ensemble according to their mutual
similarities [31].

These studies often focused on reducing the redundancy
while retaining quality of the base partitions, from the per-
spective of tradeoff between diversity and quality. For ex-
ample, S. Hadjitodorov, L. Kuncheva, and L. Todorova pro-
posed different evaluation metrics of diversity, then ranked
all the solutions based on their diversity, and finally chose

the base partitions with median diversity [28] . Fern and
Lin [26] first proposed an optimization objective consisted
of diversity and quality simultaneously and selected only a
subset of partitions from a library of clustering solutions to
maximize the objective function. However, how to balance
the role of quality and diversity in the objective function of
consensus clustering still remains unknown. Besides, some
empirical studies on the role of diversity contradict each
other [29].

Recently, Brijnesh J. Jain’s theory provided another per-
spective for improving the quality of cluster ensemble,
which may help us step out of the paradigm of trade-off
between diversity and quality [11]. In the paradigm of col-
lective wisdom, Condorcet’s Jury Theorem has been inves-
tigated as a theoretical justification of ensemble approach-
es for classification tasks [32]. Brijnesh J. Jain extended
Condorcet’s Jury Theorem to the mean partition approach
in order to explain the underlying mechanism of cluster
ensemble, and provided a different opinion on diversity-
quality tradeoff [11]. The theory claimed that what really
matters is that the mean partition is a consistent estimator of
the ground-truth. To get close to the ground-truth, diversity
in the ensemble members is neither necessary nor sufficient,
while limiting the diversity is necessary but not sufficient.
Note that Brijnesh J. Jain’ theorem proposed to include not
only the assumptions of Condorcet’s theorem, but two ad-
ditional assumptions, i.e. the existence of a unique ground-
truth partition, and the existence of a sufficiently small ball
containing the ground-truth partition and sample partition.
Although these assumptions may not hold in some cases,
it still provides a new insight into clustering ensemble, that
is, only the base partitions close to ground-truth partitions
are meaningful no matter how diverse they are. This study
gives us inspiration that additional prior knowledge can be used
to help find the region nearby the ground-truth in the partition
space.

In another recent study [12], the authors aim to theo-
retically investigate the convergence properties of cluster
ensemble approaches based on weighted co-association ma-
trices with increasing ensemble size. The elements in the
co-association matrix are assigned with weights dependent
on an evaluation function, which measures the quality of
base partitions with both local and global levels of informa-
tion. An important conclusion is that under some natural
assumptions the misclassification probability converges to
zero when the ensemble size goes to infinity, no matter
what evaluation function is applied. However, if the goal
is to achieve high accuracy with a small ensemble, careful
choices of weighting scheme that are determined by the
evaluation function is crucially important. Hence, it also
indicates that prior knowledge can be used in the design of an
evaluation function for attributing weights to the co-association
matrix.

The aforementioned studies on cluster ensemble rarely
involved utilizing limited supervision to help improve the
quality of the final consensus. The design of ensemble
selection strategies or weight function only consider the
internal quality and mutual similarities of base partitions.
In [33], a framework of generalized weighted clustering
aggregation with constraints is proposed, while the informa-
tion of pairwise constraints is introduced as the constraints
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of an optimization objective defined based on Bregman
divergence between base partitions. And in this work, we
also focus on semi-supervised cluster ensemble and design
a framework of using pairwise constraints.

2.2 Semi-supervised Cluster Ensemble

Semi-supervised clustering is popular in many fields where
limited prior knowledge is available [34], [35], [36], e.g.
COP-Kmeans [37], Seeded-Kmeans, Constrained-Kmeans [38],
and Exhaustive and Efficient Constraint Propagation(E2CP )
[39]. However, few studies concentrated on semi-supervised
clustering ensemble. Recent studies demonstrated that en-
semble approach can also enhance the performance of semi-
supervised clustering algorithms. Yu et. al. [5] first propose
an incremental semi-supervised clustering ensemble frame-
work (ISSCE) for high dimensional data clustering, which
combines the random subspace technique, the constraint
propagation approach, and the normalized cut algorithm.
Also the authors proposed an adaptive semi-supervised
clustering ensemble framework [2]. Most of these approach-
es can be classified as “Constraint-first” approach, which
adopt semi-supervised clustering algorithms to produce
many base partitions and then combine them. As mentioned
in Section 1, this framework is computational inefficient and
inflexible, and may also raise many other difficulties such
as being susceptible to noisy constraints. The difficulties
of using constrained clustering were discussed in detail
in previous studies [8], [9], [10]. However, few studies
are reported on the computational inefficiency and other
potential problems of “Constraint-first” approach. In our
previous study [7], we propose a “Cluster-first” approach
which utilizes the pairwise constraints to help select a subset
of base partitions after ensemble generation instead of en-
gaging the constraints in the generation of base partitions.
The objective function of ensemble selection is defined as
the weighted sum of diversity and quality of base partitions
as well as their consistencies with the pairwise constraints.
In this way, a subset of high-quality yet diverse base par-
titions can be found. However, the problem formulation of
the framework requires defining quality and diversity of
base partitions, which need measure similarities between
base partitions. Further, the maximization of the objective
function for ensemble selection is proven to be NP-hard.

In this work, we propose a “Cluster-first” semi-
supervised cluster ensemble framework. Instead of using
constraints for ensemble selection, it evaluates and at-
tributes weights to each cluster of the base partitions directly
with both internal validation measure of clusterings and
pairwise constraints. Accordingly, the co-association matrix
is refined and a consensus solution is achieved using graph
partitioning method. Hence it does not require either mea-
suring similarities between base partitions or solving a NP-
hard problem.

3 WEIGHTED CONSENSUS OF RANDOM K-MEANS
ENSEMBLE

Assuming that a data matrix of dimension N-by-p, X =
{x1,x2...xN}, is given as a set of N instances, with xi
denoting a p-dimensional vector. Cluster ensemble looks

TABLE 1
Table of notations

Notation Meaning
xi The i-th instance, xi ∈ Rp
X The data matrix, X ∈ RN×p
λi The i-th partition
πij The j-th cluster in λi
yim The class label of instance m determined by λi
yi The label vector of all instances determined by λi
πi←t The cluster that instance t belongs to in λi
N (πi←k) The nearest cluster of πi←t in λi
(m,n) The pairwise constraint between instances m and n
M, C The must/cannot-link constraints set
Mij , Cij The associated constraints set of cluster πij
θ(m,n,i) The consistency with constraint (m,n) of λi
µi The clustering-level weight of λi
νij The cluster-level weight of πij
ϕij The combined weight of πij
γ The scaling factor between the two level consistencies
ρij The size of associated constraint set of πij
σij The Silhouette Coefficient of πij
ωij The final weight of πij
l The size of the ensemble
H The complete binary membership matrix
H(i) The binary membership matrix of λi
W The diagonal weight matrix
S The co-association matrix

for a consensus partition λ based on a set of l partitions
λ1, ..., λl of the dataset X . The notations used throughout
this paper are summarized in Table 1.

3.1 Co-association Matrix Based Consensus Approach
WECR k-means adopts the co-association matrix based con-
sensus approach, which is widely used for combining differ-
ent partitions [15]. ThisN×N matrix defines the similarities
between N instances using the frequency of a pair of in-
stances partitioned into the same cluster. Considering a hard
clustering method, e.g. k-means, a binary membership matrix
is constructed first in order to derive the co-association
matrix.

For a base partition λi in a cluster ensemble of size l,
a binary membership matrix H(i) is a N × ki matrix, with
ki denoting the number of clusters in λi, each row of H(i)

standing for a instance and each column for a cluster in λi.
For λi, the corresponding element in the matrix H(i) is set
to 1 when an instance belongs to a cluster πij , otherwise it
is set to 0, as defined by Eq.1.

H(i)(t, j) =


1 if xt ∈ πij

0 if xt /∈ πij
(1)

A complete binary membership matrix H of the ensem-
ble can be built by combining all the binary membership
matrices of the base partitions in the ensemble horizontally,
i.e. (H(1),H(2), ...,H(l)). Hence the co-association matrix S
containing pairwise similarities between instances can be
simply derived by matrix multiplication, where l is the
number of base partitions:

S =
1

l
HH> (2)

However, using the information carried by the original
co-association matrix alone is not enough to produce a
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good consensus partition since all base partitions are treated
equally during the construction of the matrix. It will be
refined with additional information in WECR k-means.

3.2 Bayesian Model Averaging for Clustering
BMA is a classical method of model averaging. Assuming
that data X come from one of a set of possible models
F1, F2, ..., Fk, the BMA approach estimates some quantity
of interest ∆ under each model Fi and then averages the
estimates according to the posterior probability P (Fi|X) for
each model [14], i.e.,

P (∆|X) =
k∑
i=1

P (∆|Fi, X)P (Fi|X) (3)

Within the paradigm of BMA for model based clustering
[13], it is assumed that the data come from different sub-
populations, and within each subpopulation the data can be
modeled using a single component model. Hence a cluster π
can be viewed as a candidate model separately. Given a set
of base partitions, the co-association matrix S (Eq.2) which
represents the probability that each pair of instances belong
to the same cluster, has the same meaning in each model and
is invariant to the labeling of clusters, so it can be used as
the quantity of interest in the inference. Therefore, for each
pair of instances xi and xj , BMA estimates the probability,

P (xi, xj in the same cluster|X)

=
k∑
i=1

P (xi, xj in the same cluster|πi, X)P (πi|X)
(4)

Note that if all the clusters are treated equally, i.e. with
the same P (πi|X), then Eq.4 can be viewed as calculat-
ing the element in the original co-association matrix. The
term P (πi|X) can assign weight to the cluster πi by its
posterior probability. Then we can get an average of the
posterior distributions under each cluster weighted by the
corresponding posterior model probabilities.

3.3 Overview of The Framework
The proposed framework is based on the assumption that
the quality of base partitions in the ensemble is different
from each other. We further assume that even the clusters
in the same partition have different quality. They should
have different contributions to the final consensus. Under
these assumptions, we extend BMA for clustering to semi-
supervised ensemble clustering using Eq.4. The key is the
posterior probability of cluster πi, which can be given by

P (πi|X) =
P (X|πi)P (πi)
k∑
i=1

P (X|πi)P (πi)

(5)

where P (X|πi)is the marginal likelihood of πi, and P (πi)
is the prior probability. Since both terms are difficult to
estimate, an approximation is required. We propose to adopt
the internal validation measurement to approximate the
likelihood, and use the external evaluation to approximate
the prior probability. Then the weight can be given by the
multiplication of the internal validation measurement and
the external evaluation, since the denominator in Eq.5 can

be seen as a scaling factor. Note that, the cluster πi can be
generated by semi-supervised or unsupervised clustering
algorithms. However, in our framework, we propose to
employ a “Cluster-first” approach to avoid running semi-
supervised algorithms many times.

Intuitively, WECR k-means directly measures the close-
ness between base partitions and the ground-truth parti-
tion λ∗ by using both internal and external evaluations of
quality of each cluster in base partitions, and then attributes
different weights to each cluster according to the closeness.
Consistencies with pairwise constraints are utilized as the
external evaluation criterion. A pairwise constraint is given
in the form of a pairwise relation (m,n) between instances
m and n, and could be regarded as priori knowledge or
user feedback. A must-link constraint indicates a must-link
relation of two instances that they should be associated
with the same cluster. A cannot-link constraint indicates a
cannot-link relation of two instances that they should not be
associated with the same cluster.

The framework of WECR k-means is described in Fig.1.
It mainly consists of three steps: (1) generate the cluster en-
semble using unsupervised clustering, namely, k-means with
random sampling and random subspace techniques; (2)
attribute weights to clusters, using both internal validation
measure and external constraints, which will be utilized to
make refinements on the original co-association matrix; (3)
partition the co-association matrix using a graph partition
approach, e.g., Cluster-based Similarity Partitioning (CSPA)
[4].

Compared with the “Constraint-first” semi-supervised
cluster ensemble, WECR k-means circumvents the generation
of a large library of semi-supervised clusterings. Compared
with ensemble selection approaches [26], the main merits of
WECR k-means are two fold: (1) The method avoids defining
similarities between base partitions, which is usually diffi-
cult and remains an open question; (2) The circumvention
of solving an NP-hard optimization problem makes it more
efficient.

3.4 Generation of Random K-means Ensemble
In ensemble generation, k-means is adopted as its time
complexity is linear in the number of instances, dimensions,
and clusters. The FS-RS-NC method proposed in our pre-
vious work [27] is used to generate diverse base partitions.
Specifically, before each run of k-means we perform random
sampling on the data and random subspace technique on
the feature vectors. K-means is then conducted on the new
dataset. To capture local distribution of data, a relatively
large value of parameter k, number of clusters, is chosen to
produce many clusters in each partition.

We call it Random K-means Ensemble. The intention is two
fold. First, diverse base partitions would provide different
views on the original data, help create a more robust consen-
sus, and enhance the probability of finding the ground-truth
solution. Second, it is able to ease the curse of dimension-
ality by performing clustering in a low-dimensional feature
space.

3.5 Adaptive Weighting of Base Partitions
As discussed in Section 2.2, a diverse library of base parti-
tion does not naturally lead to high quality solutions. Gen-
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Kmeans Clustering
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Fig. 1. The Framework of Weighted Consensus of Random K-means
Ensemble

erally speaking, some partitions or clusters are more close
to the ground truth partition, so different base partitions or
clusters have different contributions to the final solution, or
more directly, have different influences on learning pairwise
similarities between instances.

In this work, we propose an adaptive weighting scheme
for each cluster of base partitions which is adaptive to the
limited supervision. The weighting scheme consists of three
ingredients: (1) clustering-level consistency and (2) cluster-
level consistency, which measure the consistency of a base
partition with the limited supervision at the global-level and
local-level respectively; (3) internal evaluation of clustering
quality which measures the intra-cluster and inter-cluster
similarities of a base partition simultaneously.

Specifically, pairwise constraints are used to evaluate
the consistency of base partitions. We assume that under
the same conditions, the more constraints are satisfied in a
base partition, the closer it is to the ground-truth partition.
Hence it has a larger prior probability. Fig.2 describes the
clustering-level consistency with constraints of two partitions.
The partition on the left clusters the points into four clusters,
yet the must-link constraint (a, b) is violated. The partition

on the right consists of three clusters in which the cannot-
link constraint (c, d) is violated.

Cannot-link

Must-link

Cannot-link

Must-link

a

b
c

d

Fig. 2. Illustration of clustering-level consistency

Definition 1. The clustering-level consistency measures
the degree of satisfaction of a clustering with respect to
constraints globally. Assume thatM and C are must-link and
cannot-link constraints sets respectively. The Clustering-level
consistency µi of the i-th base partition λi can be defined by
the average satisfaction of the constraints set, as shown in
Eq.6:

µi =

∑
(m,n)∈M θ=(m,n,i) +

∑
(m,n)∈C θ

6=
(m,n,i)

|M|+ |C|
(6)

Here, θ=(m,n,i) or θ 6=(m,n,i) denotes whether a must-link or
cannot-link constraint (m,n) is satisfied in λi. As defined
in Eq.7, for a must-link constraint, it would be assigned 1 if
the instances m and n are within the same cluster (denoted
by y) in partition λi, otherwise it would be assigned 0. The
situation is just the opposite for a cannot-link constraint.

θ=(m,n,i) =


1 if yim = yin

0 if yim 6= yin

θ 6=(m,n,i) =


1 if yim 6= yin

0 if yim = yin
(7)

The clustering-level consistency evaluates the partition
quality at the global level, and assigns the same weight to all
the clusters in that partition. However, note that even a good
partition of excellent overall performance is likely to contain
some bad clusters, as illustrated in Fig.3: π1 and π4 are good
clusters with all the associated constraints satisfied, while
π2 and π3 are not so good: the must-link constraint (e, f)
is not satisfied in π2 while the cannot-link constraint (f, g)
and the must-link constraint (e, f) are violated in π3. On the
other hand, a low-quality partition might also contain one
or more good clusters. In this perspective the consistency
with constraints should be extended to the cluster-level to
get a more local and fine-grained evaluation.

Since every cluster contains only a part of instances, the
calculation of the cluster-level consistency of a cluster should
only take into consideration the constraints associated with
that cluster, which are described below.

Definition 2. The associated constraint set of a cluster
is a set of constraints with at least one instance of a pair
included in that cluster. The associated constraint sets Mij

and Cij for the j-th cluster in i-th clustering πij are given in
Eq.8 and Eq.9 respectively.

Mij = {(m,n)|(m,n) ∈M,m ∈ πij ∨ n ∈ πij} (8)
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Fig. 3. Illustration of cluster-level consistency

Cij = {(m,n)|(m,n) ∈ C,m ∈ πij ∨ n ∈ πij} (9)

Based on the definition of associated constraint set, the
cluster-level consistency of a cluster is defined below.

Definition 3. The cluster-level consistency measures the
degree of satisfaction of a cluster with respect to its associated
constraint set. As defined by Eq.10, it is in the same form
of the clustering-level consistency. For those clusters with no
constraints associated, we set the cluster-level consistency to
1.

νij =


∑

(m,n)∈Mij
θ=(m,n,i)+

∑
(m,n)∈Cij

θ 6=
(m,n,i)

|Mij |+|Cij |
ifMij ∪ Cij 6= Ø

1 otherwise
(10)

Weighting based on two-level consistencies
The weighting scheme of base partitions first combines

the clustering-level consistency (global-level) and cluster-level
consistency (local-level). Here we use a nonlinear combina-
tion function , as the tradeoff between global-level and local-
level consistencies depends on the complicated relations
between the size of both the constraints set and associated
constraint set.

First, note that the size of associated constraints set Mij

and Cij may vary significantly among all clusters in a clus-
tering λi. Intuitively, when the size of associated constraints
set is large, we have more confidence in the cluster-level
consistency weighting of a cluster πij . On the contrary, it
is less reliable to use cluster-level consistency to measure
the quality of a cluster alone when the size of associated
constraints set of that cluster is small. In such case, clustering-
level consistency, which measures the average consistency of
all clusters, should be used as an auxiliary weight to depict
the quality of that cluster.

In this regard, we must first consider how to judge
whether the size of the associated constraint set of a cluster
is sufficient or not. We introduce the concept of expected
size of associated constraints set E(ρij) for cluster πij . As-
suming that constraints are distributed uniformly among N
instances, the expected size of associated constraints set should
be proportionate to the size of each cluster, as shown in
Eq.11, where ρij = |Mij | + |Cij |, denoting the size of
associated constraints set of πij .

E(ρij) =
|πij |
N
× (|M|+ |C|) (11)

If ρij > E(ρij), we have full confidence in using cluster-
level consistency of cluster πij to evaluate its quality. Other-
wise, clustering-level consistency should be used together.

Second, the total number of constraints should be taken
into consideration. Note that the expected size of associated
constraints set depends in part on the size of constraint set, so
that it can be very small if the total number of constraints is
small. In such case, cluster-level consistency is still not reliable
in evaluating the quality of a cluster, even if the expected size
of associated constraints set is achieved in that cluster.

Taking the above considerations into account, a non-
linear combination function ϕ(πij), as shown in Eq.12, is
proposed. Here the weight function gγ(πij) is actually a
function of conij with a hyperparameter γ ( Eq.13). Fig.4
describes the graphs of function gγ with different parame-
ters γ ∈ [0, 1].

ϕ(πij) = (1− gγ(πij))µi + gγ(πij)νij (12)

gγ(πij) =


ρij

E(ρij)
× γ 0 < ρij ≤ E(ρij)

ρij−E(ρij)
|M|+|C|−E(ρij)

× (1− γ) + γ otherwise
(13)

First, we have gγ(πij) → 0 when ρij → 0, which
means we tend to use clustering-level consistency µi to mea-
sure the quality of πij when there are not enough asso-
ciated constraints. Similarly, we have gγ(πij) → 1 when
ρij → |M| + |C| since a larger associated constraints set
makes cluster-level consistency more trustable. Second, it is
designed as a piecewise linear function because the expected
size of associated constraints set plays a role in determining the
function value, as shown in Fig.4. It can be observed that,
when ρij < E(ρij), the influence of cluster-level consistency
on the weight of πij is suppressed. When ρij > E(ρij), the
contribution of cluster-level consistency to the weight grows
more quickly to 1 as the size of associated constraints set
increases.

Taking the total number of constraints into account, the
scaling factor γ ∈ [0, 1] is introduced to further control to
what extent cluster-level consistency contribute to the final
weight of cluster πij . Generally speaking, it can be adjusted
according to the total number of given constraints. It should
be set to a large value close to 1 if we have a large number of
constraints. As shown in Fig.4:(c), it is the ideal case when
there is sufficient number of constraints. And in this case,
if ρij > E(ρij), we have full confidence in using cluster-
level consistency to evaluate the quality of πij , as mentioned
above. On the contrary, when the number of constraints is
small, it should be set to a small value, as shown in Fig.4:(b).
In such case, if ρij < E(ρij), it even gets rid of the effect of
the cluster-level consistency.

Refining with Internal Validation Measurement
Internal validation measurements are widely used to

quantify the quality of clustering solutions by considering
both compactness and separation, when class labels of data
is absent. It is clear that well-formed cluster has a larg-
er likelihood, and should make more contribution to the
consensus partition. Hence we adopt the internal validation
measurements to approximate the marginal likelihood of a
cluster, along with the aforementioned weighting scheme
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Fig. 4. The graphs of function gγ with different parameters γ ∈ [0, 1]

based on two-level consistencies as a refinement to provide
a more precise weight for each cluster. Here we adopt
Silhouette Coefficient [40] as the evaluation metric, which
evaluates the internal quality of clustering by comparing
pairwise distances within and between the clusters. It can
be scaled to the interval [0,1], and is easy to calculate.

Silhouette Coefficient
Given a base partition λi, the Silhouette Coefficient of point

xt in the partition λi is defined in Eq.14. Here πi←t repre-
sents the cluster that xt belongs to, and N (πi←t) stands for
the nearest cluster of πi←t in λi. dist(·, ·) denotes the Eu-
clidean distance between two instances, to keep consistent
with the Euclidean distance metric adopted in k-means.

σit =

∑
x∈πi←t

dist(xt,x)

|πi←t| −
∑
x∈N(πi←t)

dist(xt,x)

|N (πi←t)|

max(
∑
x∈πi←t

dist(xt,x)

|πi←t| ,
∑
x∈N(πi←t)

dist(xt,x)

|N (πi←t)| )
(14)

The Silhouette Coefficient of a cluster πij is the average over
all points in πij , as described in Eq.15.

σij =

∑
xt∈πij σ

i
t

|πij |
(15)

According to Eq. 5, the final weight of j-th cluster in λi
can be derived by multiplication of its Silhouette Coefficient
and consistency with constraints:

wij = σij × ϕ(πij) (16)

3.6 Partition of the Refined Co-association Matrix

Next, the weights of clusters are utilized to refine the orig-
inal co-association matrix. Specifically, a weight matrix W
corresponding to H is defined as:

W =

w11 . . . 0
...

. . .
...

0 . . . wlkl

 (17)

W is aK×K diagonal matrix, whereK =
∑l
i=1 ki. Each

element on the diagonal is the weight of a cluster. Then the
refined co-association matrix S could be defined by Eq.18:

S =
1

l
HWH> (18)

After the construction of co-association matrix, for sim-
plicity, we use two widely adopted methods [4], Cluster-
based Similarity Partitioning (CSPA) and Spectral Cluster-
ing ( SPEC) to partition the final graph in order to produce

a final consensus clustering. For more details of CSPA and
SPEC, please refer to [4].

The whole procedure of WECR k-means is described in
Algorithm 1 in Appendix A. First, an ensemble of base
partitions is generated and the complete binary membership
matrix is derived (line 1∼6). Then for each partition λi, the
clustering-level consistency µi, internal validation measure σij
and cluster-level consistency νij of clusters in λi are comput-
ed, and the weight vector wi of partition λi is obtained(line
7∼18). Next, the refined co-association matrix S is derived
by a matrix multiplication using the weight matrix W built
from all weight vectors w1,w2...wl. Finally, a consensus
partition method is applied to S to get the final solution(line
19∼22).

3.7 Time Complexity Analysis

Compared with “Constraint-first” approach, WECR k-means
is much more computational efficient as it avoids perform-
ing time-consuming semi-supervised clustering algorithms.
Hence the main reduction in time cost comes from the
ensemble generation step, while the time cost is the same
in the consensus partition step which is determined by
the adopted consensus approach. In ensemble generation,
WECR k-means is with a complexity of O(l ∗ N ∗ k ∗ p),
where l stands for the size of ensemble, N is the number
of instances, p is the number of features, and k is the
number of clusters. For “Constraint-first” approach, this
step would have a much higher complexity. For example,
the E2CP ensemble has a complexity of O(l ∗ k′ ∗N2 ∗ p),
where k′ denotes the number of nearest neighbors when
constructing k-NN graph. For COP-Kmeans, the actual time
cost relies on the exact situation of constraints satisfaction
in the iterations.

The additional time cost of our method comes from the
adaptive weighting procedure, which can mainly be decom-
posed into three parts: (1) calculation of clustering-level con-
sistency (with complexity O(l ∗ |M +C|)); (2) calculation of
cluster-level consistency(O(l∗max(|M+C|, k)), k is the av-
erage number of clusters in each base partition, and |M+C|
denotes the total number of constraints); (3) calculation of
Silhouette Coefficient(O(l ∗ N2 ∗ p)). Note that the overall
complexity of first two parts isO(l∗max(|M+C|, k)), which
is independent of the number of instances. In a large dataset,
l, |M + C| and k are often far less than the total number of
instances N . Hence the overall complexity of building the
weighted co-association matrix is O(l ∗N2 ∗ (k + p)).
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TABLE 2
Overview of datasets

Name #instances #features #classes
Segmentation 2310 19 7
Optdigits 3823 64 10
Drift 13910 256 6
ISOLET-5 1559 617 26
Fashion-MNIST 10000 784 10
MNIST4000 4000 784 10
COIL20 1440 1024 20
SRBCT 83 2309 4
Leukemia1 72 5328 3
Prostate 102 10510 2
Leukemia2 72 11226 3
LungCancer 203 12601 4

4 EXPERIMENTS

4.1 Datasets and Constraint Generation Method

We evaluate our method and other clustering algorithms
on twelve real-world datasets, including four UCI datasets,
Optdigits, ISOLET-5, Segmentation, Drift [41], five high-
dimensional and small-sample Microarray datasets [42], and
three image datasets COIL20, MNIST4000 [43] and Fashion-
MNIST [44]. Details of the datasets are listed in Table 2.
In order to distinguish them from Microarray datasets, we
call the other seven datasets normal datasets. All pairwise
constraints used in our experiments are generated artifi-
cially based on the ground-truth labels, following the main
framework presented by K. Wagstaff, C. Cardie, S. Rogers,
and S. Schrödl [37]. In order to thoroughly investigate the
algorithms, we consider two types of pairwise constraints.

(1) Random constraints. Generation of random con-
straints is summarized in Algorithm 2 in Appendix A.
Slightly different from Wagstaff’s method [37], the must-
link constraints (line 5∼17) and cannot-link constraints (line
18∼25) are generated separately in order to generate must-
link constraints proportionate to the size of each class (line
6).

(2) Noisy constraints. In order to explore the robust-
ness of the algorithms to noisy supervision, some noisy
constraints, i.e. constraints providing incorrect information,
are generated using Algorithm 3 in Appendix A.

Note that in order to explore the relationships between
constraints, a standard process of calculating transitive clo-
sure of a given constraint set [2] should be applied. The
detailed descriptions of Algorithm 2 and Algorithm 3 are
displayed in Appendix A.

4.2 Evaluation Metric

Since the datasets used in the experiments have ground-
truth labels, we use Normalized Mutual Information (NMI)
to evaluate the consensus partition, which measures shared
information between the consensus partition and ground-
truth partition. According to [45], 1−NMImax, also called
normalized information distance, has the normalization and
metric properties. It can be used as a general measure to
compare two partitions as a distance metric. Hence we
use the NMImax between a consensus partition λ and
the ground-truth partition λ∗, as defined in Eq. 21, where
H(λ∗) and H(λ) denote the information entropy of λ∗

and λ respectively (Eq. 19), MI(λ∗, λ) denotes the mutual
information (Eq. 20), and π∗ and π denote a cluster in λ∗

and λ respectively.

H(λ) = −
∑
i

|πi|
|X|

log(
|πi|
|X|

) (19)

MI(λ∗, λ) =
∑
i

∑
j

|πi ∩ π∗j |
|X|

log(
|X||πi ∩ π∗j |
|πi||π∗j |

) (20)

NMImax(λ, λ∗) =
MI(λ, λ∗)

max(H(λ), H(λ∗))
(21)

4.3 Experimental Setting

We compare WECR k-means with classical and state-of-the-
art semi-supervised algorithms, i.e. COP-Kmeans and its
ensemble [37], E2CP [39] and its ensemble, SSKKE [46] and
DCECP [47]. Additionally, we also report the results of two
unsupervised ensemble clustering algorithms, i.e. KCC [48]
and U-SENC [49].

For cluster ensemble generation, 100 base partitions are
generated for each ensemble. CSPA and SPEC [4] are adopt-
ed to combine the base partitions of COP-Kmeans, E2CP
and WECR k-means.

The methods and their own settings in the experiments
are summarized in Table 5 in Appendix B. Our methods
are implemented in python 3.6.3 using scikit-learn 0.19.1
[50], while in CSPA we partition the similarity graph using
METIS [51]. All experiments are conducted in a PC with
i7-3770 CPU and 8GB RAM.

In the following experiments, we first compare the
computational efficiency of multiple semi-supervised and
unsupervised clustering ensemble approaches over different
datasets. Then we study the effect of the hyparameters. Fi-
nally, we investigate the performance of different algorithms
in three cases: (1) Experiment I: we generate a random
constraint pool of size 2N . Then we compare the algorithms
in an incremental setting, that is, gradually adding new
constraints into the current constraint set from the pool, with
the set size increasing from 0.25N to 2N . (2) Experiment
II: to show the stability of the algorithms with respect to
different random constraints, we report the results with ten
constraints sets of the same size, for five size 0.25N ∼ 2N
respectively. (3) Experiment III: we add different levels
(5%, 10%, 15%, 20%) of noise into a random constraints set
of size N , and explore the effect of noisy constraints on the
performances of the algorithms.

4.4 Comparison on Computational Efficiency

We report the average time cost of ten random experiments
of the ensemble algorithms (with 100 base partitions) on
every dataset in Table 3, where the datasets are arranged
in ascending order of their sample size. The results show
that on all the datasets, WECR k-means is superior to other
semi-supervised clustering ensemble algorithms, especially
on the larger datasets. Compared with the two unsupervised
clustering ensemble algorithms, it outperforms U-SENC on
the Microarray datasets, and outperforms KCC on all the
datasets except Drift.
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Table 6 and Fig.7 in Appendix B show the average time
cost of generating a base partition for the clustering en-
semble algorithms with constraint sets of size N on twelve
datasets respectively. The results show why WECR k-means
is fast. It is much more efficient in ensemble generation than
the others except U-SENC, while its time cost in weighting
operation of a base partition is also very small. Detailed
discussions are given in Appendix B.

4.5 The Effect of Hyperparameters
In order to explore the effect of hyperparameters of WECR
k-means, extensive experiments are conducted on random
constraint set of size N . For each dataset, several libraries
are generated with varying sampling rates ri (on sample)
and rf (on features). The results show that for the five
Microarray datasets, the best results are obtained with
ri ∈ [0.5, 0.7] and rf ∈ [0.2, 0.3], while for the other datasets
with more instances and fewer features, the best sampling
rates settings are ri ∈ [0.2, 0.3] and rf ∈ [0.6, 0.7]. The
reason may lie in the fact that for small-sample and high-
dimensional data, more instances should be sampled to
capture the distribution of the original data, while there
exists great redundancy in the high dimensional feature
space so that a smaller proportion of features can achieve
good performance. The situation is just the opposite for
other datasets. In the following experiments, we will use
these parameter settings for WECR k-means. The hyperpa-
rameter γ, which is the scaling factor between clustering-
level and cluster-level weights, is tuned in [0, 1] with 0.1 as
the step size. Limited by the length, the tuning method of γ
is described in Appendix C.

4.6 Experiment I: Comparison on Incremental Con-
straints
Experiment I was carried out ten times. The average ranks
of different algorithms over twelve datasets are displayed in
Table 4 (Fig. 8 in Appendix B), which shows that WECR k-
means with CSPA obtains the highest average ranking with
all sizes of constraints set. WECR k-means with SPEC ranks
first when the constraints size is 0.5N , and ranks second in
the other cases. Under each constraint set size, to evaluate
the statistical significance , we perform Friedman Test on
the averaged ranks of twelve algorithms on the twelve
datasets in the ten random trials. The results show that
the performances of WECR k-means is significantly different
from that of other algorithms (at significant level p < 0.05),
while there are no significant differences between WECR
k-means with CSPA and WECR k-means with SPEC. Look
into the single semi-supervised clustering algorithms, the
performances of COP-Kmeans are always relatively poor,
while E2CP often obtains better partitions, especially on
Optdigits and MNIST4000. Table 4 also indicates the effec-
tiveness of DCECP and E2CP , both of which have high
average rankings. The performance of SSKKE is not stable
in different run of the ten experiments. It achieves better
performances in some cases, while perform much worse in
other cases.
We also report the average and standard deviation of NMI
scores of all the algorithms over all datasets in Table 7

in Appendix B, which provides a clear overview of the
advantages of WECR k-means over other methods.

To more intuitively show the significant differences a-
mong the algorithms, Fig.5 and Fig.6 display the result of
one of the experiments. They show the NMI value of the
twelve algorithms on twelve datasets respectively, with the
horizontal axis representing different number of constraints.
For a clear comparison, Fig.5 displays the results of ten
algorithms, i.e. two WECR k-means algorithms, three E2CP
related algorithms, three COP-Kmeans related algorithms,
and two unsupervised methods, KCC and U-SENC. Fig.6
displays the results of two WECR k-means algorithms, two
semi-supervised ensemble methods SSKKE and DCECP,
and two unsupervised methods, KCC and U-SENC. The
results also reveal some interesting findings as follows.

(1) Ensemble approaches do not always improve the
performances of individual semi-supervised clusterings. It
can be concluded that COP-Kmeans is likely to get promoted
with ensemble approaches while E2CP is less likely to be
enhanced. This can also be illustrated by the average ranks
displayed in Table 4.

Specifically, using CSPA as the consensus method, COP-
Kmeans ensemble perform much better than COP k-means,
on Optdigits, MNIST4000, COIL20, Segmentation, SRBCT,
and Leukemia2. Using SPEC, COP-Kmeans ensemble perfor-
m much better than COP-Kmeans on Optdigits, MNIST4000,
LungCancer, Leukemia1 and Leukemia2. However, the per-
formances of COP-Kmeans ensemble are unstable. They are
able to achieve very good partitions on some datasets,
but have very poor performances on other datasets, e.g.
LungCancer. The case is quite different when performing
E2CP ensemble. In most cases, the performances of E2CP
ensemble drop sharply compared toE2CP , except for being
applied on Prostate and LungCancer with SPEC as the
consensus approach, and on COIL20 with CSPA or SPEC.
It indicates that E2CP is less likely to be enhanced by en-
semble approaches. The difference in performance between
E2CP and COP-Kmeans coincides with the principal of
ensemble learning: a set of weak learners can create a single
strong learner, since COP-Kmeans usually performs much
worse than E2CP , the ensemble approaches are capable to
boost the former rather than the latter.

(2) The data characteristics, e.g. curse of dimensionality,
has great impact on the performances. In terms of overall
performance, the clustering algorithms work better on nor-
mal datasets than Microarray datasets. E2CP ensemble is
an exception because it does not improve the performance
of E2CP . The results also show higher variances on Mi-
croarray datasets (except Prostate) compared with normal
datasets, which is probably due to their high number of fea-
tures and small sample size. Besides, it is worth noting that
all algorithms perform poorly on Prostate, which provides
a great challenge for clustering.

(3) When the number of constraints increases, the perfor-
mances of algorithms might not get promoted accordingly,
on the contrary they exhibit some degree of fluctuations,
especially on the Microarray datasets. Among them, WECR
k-means and DCECP are relatively robust and show less
fluctuations. As mentioned in Section 2, the main reason
may lie in the fact that the utility of constraints is demon-
strated not consistent for different semi-supervised algo-
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TABLE 3
Average time cost(in seconds) of the entire algorithms on twelve datasets

Methods WECR k-means
(CSPA)

WECR k-means
(SPEC)

COP-kmeans
(CSPA)

COP-kmeans
(SPEC)

E2CP
(CSPA)

E2CP
(SPEC) DCECP SSKKE U-SENC KCC

Leukemia2 7.59 7.46 14.59 14.45 50.58 50.56 65.59 90.10 11.92 48.59
Leukemia1 3.80 3.45 6.51 6.16 35.94 35.89 46.61 92.42 8.37 19.72

SRBCT 2.94 2.59 4.02 3.66 34.57 33.52 44.83 153.05 6.32 12.33
Prostate 8.27 7.87 54.09 53.68 61.58 60.52 79.93 265.66 15.21 36.48

LunCancer 24.04 23.29 42.40 41.65 154.78 151.67 200.98 2137.35 26.18 165.26
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Fig. 5. Comparison of ten algorithms on twelve datasets with incremental constraints (0.25N ∼ 2N ): to show the impact of curse of dimensionality,
the graphs are arranged in ascending order of the number of features of each datasets. The horizontal axis represents different number of
constraints, and the vertical axis represents the NMI value between the clustering result and the ground-truth partition.
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Fig. 6. Comparison of six algorithms on twelve datasets with incremental constraints (0.25N ∼ 2N ): to show the impact of curse of dimensionality,
the graphs are arranged in ascending order of the number of features of each datasets. The horizontal axis represents different number of
constraints, and the vertical axis represents the NMI value between the clustering result and the ground-truth partition.

rithms [8]. The high variance of the experimental results
of the same algorithm on the same data set stems from the
effect of random constraints, which have great impact on
the performances of semi-supervised algorithms, and do not
always improve the performance. Since in real applications
the utility of priori knowledge or user feedbacks is unlikely
guaranteed in advance, it once again raises the question of
whether it is necessary to perform time-consuming semi-

supervised algorithm in ensemble generation, especially
when the dataset is very large and constraint information
is very limited.

(4) Consensus methods, i.e. CSPA and SPEC, play an
important role on the performances, when the ensemble
approach works. It is worth noting that the performance
of the two consensus methods, CSPA and SPEC, is highly
dependent on the datasets. It is quite plausible that CSPA
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TABLE 4
The average ranks of performances of the twelve algorithms over

twelve datasets with different number of constraints

Methods 0.25N 0.5N N 1.5N 2N

WECR k-means(CSPA) 2.3 2.0 2.3 2.3 2.2
WECR k-means(SPEC) 2.3 2.2 2.4 2.6 3.3

DCECP 4.2 4.3 5.0 4.8 5.0
SSKKE 8.8 8.4 8.7 7.8 6.8

U-SENC 6.3 6.6 6.8 7.1 7.4
KCC 8.4 8.9 8.8 9.1 8.9

E2CP(single) 6.1 5.6 4.3 4.5 3.7
E2CP(CSPA) 9.7 9.0 9.0 8.3 7.4
E2CP(SPEC) 8.4 8.1 8.1 7.3 6.5

COP-Kmeans(single) 10.5 10.4 9.7 9.7 10.7
COP-Kmeans(CSPA) 7.8 7.9 8.1 8.2 8.5
COP-Kmeans(SPEC) 7.9 8.3 8.2 8.3 8.5

might outperform SPEC in one dataset, while SPEC might
outperform CSPA in another dataset. As a result, the clus-
tering approaches also inherit their dependency on specific
datasets. For example, for WECR k-means and COP-Kmeans
, when using CSPA their performances are better than using
SPEC on Leukemia2, while the case is just the opposite
on Leukemia1. The ensemble approach does not work for
E2CP on the two datasets. On LungCancer, using CSPA the
three ensemble methods perform poorly, while all of them
perform much better using SPEC. If we compare them using
the same consensus function, we can see more clearly the
effectiveness of our approach.

(5) Compared with unsupervised ensemble clustering
methods, the semi-supervised algorithms even achieve
worse performances in many cases. This is a relatively
rare phenomenon on the normal datasets, e.g. applying
E2CP and its ensemble on Segmentation, and applying
E2CP ensemble on Optdigits and MNIST4000. Note that
U-SENC achieve very good performances. On ISOLET, it
always outperform all the semi-supervised algorithms. On
the Microarray datasets, while all the semi-supervised al-
gorithms exhibit relatively higher variance, they perform
worse than KCC and U-SENC in many cases. This also
illustrates once again the impact of curse of dimensionality
on the performances. It can be observed that WECR k-means
and DCECP always perform better than the unsupervised
methods, except in few cases.

In order to confirm the above observations, Experiment
I was carried out ten times. In each trial, a new constraint
pool of size 2N was generated randomly. For each constraint
set, we then repeated the experiment five times respectively.
The results are similar to each other in terms of NMI when
the experiments are conducted on the same constraint set.
This shows that the performance of different algorithms is
consistent when the constraint set remains the same. For
each of ten experiments, we compare the algorithms with
the same incremental setting. To more clearly show the
changes of the performances of twelve algorithms, we draw
Fig.9 in Appendix B to display the average performances
over ten random experiments of each algorithms on the
datasets. It shows that although the results are different
from each other in terms of NMI, we can still draw similar
conclusions on the comparison of the different algorithms.

4.7 Experiment II: Comparison on Different Constraint
Sets
To intuitively show the adaptability of WECR k-means to
different constraints, clustering results with respect to ten
different random constraints sets with the same size N
are displayed in Fig.12 in Appendix B. The horizontal axis
represents ten different constraint sets and the vertical axis
denotes NMI value. It shows that the results of mutual
comparisons of these algorithms are quite consistent with
Experiment I.

Due to the randomness of constraints, the results of
all algorithms exhibit some degree of variances. Similarly,
the curse of dimensionality may increase the variance on
Microarray datasets. Overall, the performances of WECR
k-means are stable and they are demonstrated to be more
adaptive to different constraints through comparisons on
standard deviations of NMI (see Table 8 in Appendix
B). The results of remaining four size of constraint set-
s, 0.25N, 0.5N, 1.5N, 2N , are displayed in Fig.10, Fig.11,
Fig.13, and Fig.14 in Appendix B.

4.8 Experiment III: Comparison on Constraints with
Noise
Fig.15 in Appendix B displays the performances of the
algorithms with respect to different levels of noise (0,
5%,10%,15%,and 20%) in the random constraint sets of size
N . Generally, the results could be divided into two parts to
analyze according to the characteristics of the datasets.

(1) Generally speaking, for the seven normal datasets,
the algorithms except WECR k-means, E2CP (single) and
DCECP show varying degrees of downward trend or fluc-
tuations in the performance curves when the noise level
gradually increases. When the noise level is 20%, even on
the normal datasets, their performances can be degraded
to close to that of the two unsupervised algorithms. WECR
k-means is stable and has the best overall performances.

(2) For the five Microarray datasets, the algorithms tend
to exhibit relatively larger fluctuations with the increasing
of noise level. It is mainly due to the data characteristics
of high dimension and small sample. In this case, WECR k-
means and DCECP also perform better than other algorithms
in terms of robustness. It can be observed that WECR k-
means always achieves large NMI values even with noisy
constraints, except on Prostate. In this case, E2CP shows
slightly worse performances than it does in the first case,
except on SRBCT.

The standard deviations of the results (see Table 9 in
Appendix B) also demonstrate that WECR k-means are the
most robust to noisy constraints among all the ten semi-
supervised algorithms while keeping a high quality. The
semi-supervised algorithms are more susceptible to noisy
constraints, which has great impact on the qualities of base
partitions and subsequently deteriorates their ensemble.
The mechanism of E2CP which does not use constraints
directly may protect it from the negative influences of noisy
constraints to some degree, so E2CP is less affected. Note
that DCECP also employsE2CP to generate base partitions,
so it is also less affected. Similarly, in order to confirm
the above observations, Experiment III was carried out ten
times, with ten different random constraint sets of size
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N, and the conclusions are consistent. The box plots of
the average ranks over ten experiments are displayed in
Fig.16 in Appendix B. According to the results of average
ranks, we also perform Friedman Test which shows that the
performances of WECR k-means are significantly different
from that of other algorithms (at significant level p < 0.05),
while there are no significant differences between WECR k-
means with CSPA and WECR k-means with SPEC.

5 CONCLUSION

In this paper, we have introduced a “Constraint-first” frame-
work of using constraints in semi-supervised cluster en-
semble and demonstrated its effectiveness. It is much more
computational efficient than the traditional framework, as
it avoids performing time-consuming semi-supervised clus-
tering. Moreover, in a dynamic learning environment with
an increasing or changing supervisory information like user
feedbacks, WECR k-means does not require reproducing a
cluster ensemble and re-calculating the Silhouette Coefficients
of base partitions. Only the clustering-level and cluster-level
consistencies are required to be re-examined according to the
new constraint set. In this case, the main time cost of WECR
k-means rests with the adopted consensus function. Also,
this framework is much more robust to noisy constraints
while semi-supervised clustering algorithms are usually
susceptible to noise.

The co-association matrix based consensus approach
used in this work is inefficient with a complexity of O(N2).
In the future, we will investigate how to combine WECR
k-means with other scalable consensus approaches. We will
also investigate more scalable internal validation measure-
ments.
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means clustering with background knowledge,” in Proc. of the 18th
International Conference on Machine Learning, 2001, pp. 577–584.

[38] S. Basu, A. Banerjee, and R. Mooney, “Semi-supervised clustering
by seeding,” in Proc. of the 19th International Conference on Machine
Learning, 2002, pp. 19–26.

[39] Z. Lu and Y. Peng, “Exhaustive and efficient constraint propa-
gation: A graph-based learning approach and its applications,”
International Journal of Computer Vision, vol. 103, no. 3, pp. 306–325,
2013.

[40] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” Journal of Computational and
Applied Mathematics, vol. 20, no. C, pp. 53–65, 1987.

[41] M. Lichman, “UCI machine learning repository,” 2013.
[42] A. R. Statnikov, I. Tsamardinos, Y. Dosbayev, and C. F. Aliferis,

“GEMS: A system for automated cancer diagnosis and biomarker
discovery from microarray gene expression data,” International
Journal of Medical Informatics, vol. 74, no. 7-8, pp. 491–503, 2005.

[43] D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized
nonnegative matrix factorization for data representation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 33,
no. 8, pp. 1548–1560, 2011.

[44] H. Xiao, K. Rasul, and R. Vollgraf, “Fashon-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

[45] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures
for clusterings comparison: Variants, properties, normalization
and correction for chance,” Journal of Machine Learning Research,
vol. 11, pp. 2837–2854, 2010.

[46] B. Kulis, S. Basu, I. Dhillon, and R. Mooney, “Semi-supervised
graph clustering: a kernel approach,” Machine learning, vol. 74,
no. 1, pp. 1–22, 2009.

[47] Z. Yu, P. Luo, J. Liu, H.-S. Wong, J. You, G. Han, and J. Zhang,
“Semi-supervised ensemble clustering based on selected con-
straint projection,” IEEE Transactions on Knowledge and Data En-
gineering, vol. 30, no. 12, pp. 2394–2407, 2018.

[48] J. Wu, H. Liu, H. Xiong, J. Cao, and J. Chen, “K-means-based con-
sensus clustering: A unified view,” IEEE transactions on knowledge
and data engineering, vol. 27, no. 1, pp. 155–169, 2015.

[49] D. Huang, C.-D. Wang, J. Wu, J.-H. Lai, and C. K. Kwoh, “Ultra-
scalable spectral clustering and ensemble clustering,” IEEE Trans-
actions on Knowledge and Data Engineering, 2019.

[50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[51] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM J. Scientific Com-
puting, vol. 20, no. 1, pp. 359–392, 1998.

Yongxuan Lai received the PhD degree in com-
puter science from Renmin University of China
in 2009. He is currently an associate professor
in Software School, Xiamen University, China.
He is an visiting scholar during Sep. 2017 - Sep.
2018 at University of Queensland, Australia. His
research interests include network data man-
agement, vehicular ad-hoc networks, and big
data management and analysis.

Songyao He Received B.S degree in Depart-
ment of Automation from Xiamen University in
2018. She is currently a master student from
Department of Automation at Xiamen Universi-
ty.Her research interests is ensemble learning
and data mining.

Zhijie Lin received B.S degree in Software En-
gineering from Xiamen University in 2015. He
is currently a master student from Software
School, Xiamen University. His research inter-
ests is data mining.

Fan Yang received his Ph.D. degree in Control
Theory and Control Engineering from Xiamen
University in 2009. He is currently an associate
professor in the Department of Automation at X-
iamen University. His research interests include
feature selection, ensemble learning, and bioin-
formatics.

Qifeng Zhou received her Ph.D. degree in Con-
trol Theory and Control Engineering from Xia-
men University in 2007. She is currently an asso-
ciate professor in the Department of Automation
at Xiamen University. Her research interests are
machine learning, intelligence system, and digi-
tal image processing.

Xiaofang Zhou received the bachelor’s and
master’s degrees in computer science from Nan-
jing University in 1984 and 1987, respectively,
and the PhD degree in computer science from
the University of Queensland, in 1994. He is a
professor of computer science at the University
of Queensland, and also head of Data Engineer-
ing and Pattern Recognition Research Division
at UQ. He is a specially appointed adjunct pro-
fessor of computer science at Soochow Univer-
sity, China. His research interests include spatial

and multimedia databases, high performance query processing, web
information systems, data mining, and data quality management. He is
a fellow of the IEEE.


