
Journal of Parallel and Distributed Computing 171 (2023) 28–39

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Online computation offloading with double reinforcement learning

algorithm in mobile edge computing

Linbo Liao a, Yongxuan Lai a,b,∗, Fan Yang c, Wenhua Zeng a

a School of Informatics / Shenzhen Research Institute, Xiamen University, Xiamen/Shenzhen, China
b School of Mathematics and Information Engineering, Longyan University, Longyan, China
c Department of Automation, School of Aerospace Engineering, Xiamen University, Xiamen, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 August 2021
Received in revised form 27 June 2022
Accepted 7 September 2022
Available online 14 September 2022

Keywords:
Mobile edge computing
Power control
Computation offloading
Deep deterministic policy gradient
Double Deep Q-Networks

Smart mobile devices have recently emerged as a promising computing platform for computation tasks.
However, the task performance is restricted by the computing power and battery capacity of mobile
devices. Mobile edge computing, an extension of cloud computing, solves this problem well by providing
computational support to mobile devices. In this paper, we discuss a mobile edge computing system
with a server and multiple mobile devices that need to perform computation tasks with priorities.
The limited resources of the mobile edge computing server and mobile device make it challenging to
develop an offloading strategy to minimize both delay and energy consumption in the long term. To
this end, an online algorithm is proposed, namely, the double reinforcement learning computation offloading
(DRLCO) algorithm, which jointly decides the offloading decision, the CPU frequency, and transmit power
for computation offloading. Concretely, we first formulate the power scheduling problem for mobile
users to minimize energy consumption. Inspired by reinforcement learning, we solve the problem by
presenting a power scheduling algorithm based on the deep deterministic policy gradient (DDPG). Then,
we model the task offloading problem to minimize the delay of tasks and propose a double Deep Q-
networks (DQN) based algorithm. In the decision-making process, we fully consider the influence of task
queue information, channel state information, and task information. Moreover, we propose an adaptive
prioritized experience replay algorithm to improve the model training efficiency. We conduct extensive
simulations to verify the effectiveness of the scheme, and the simulation results show that compared
with the conventional schemes, our method reduces the delay by 48% and the energy consumption by
53%.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

With the development of wireless communication and the
Internet of Things (IoT), smart mobile devices (MDs) have be-
come a new mobile computing platform on which applications
such as video surveillance, face recognition, and natural lan-
guage processing are widely deployed [36,14]. These pose strict
requirements on the computational power of MDs, especially
for computation-intensive applications. The contradiction between
resource-constrained MDs and computation-intensive applications
becomes the bottleneck when providing satisfactory quality of ex-
perience (QoE) [19].

* Corresponding author at: School of Informatics / Shenzhen Research Institute,
Xiamen University, Xiamen/Shenzhen, China.

E-mail addresses: lbliao@stu.xmu.edu.cn (L. Liao), laiyx@xmu.edu.cn (Y. Lai),
yang@xmu.edu.cn (F. Yang), whzeng@xmu.edu.cn (W. Zeng).
https://doi.org/10.1016/j.jpdc.2022.09.006
0743-7315/© 2022 Elsevier Inc. All rights reserved.
As an effective method to solve the above-mentioned problem,
recently various computation offloading schemes have been pro-
posed, which migrate the computation tasks to other devices or
platforms for execution [5]. The cloud computing systems, for ex-
ample, would transfer all or part of the computation tasks to the
cloud server to alleviate the heavy burden on the MDs. The main
drawback of this cloud-based offloading approach is that it usually
causes an unacceptable transmission delay as the cloud is usu-
ally far away from the clients. In contrast, mobile edge computing
(MEC) deploys servers or micro-servers close to the MDs to reduce
the transmission delay [24]. Therefore, MEC has become a promis-
ing computing paradigm for the various mobile applications [21].

There has been some research on the problem of computation
offloading in MEC systems, most of which aim at enhancing the
users’ QoE. Viewed as a convex optimization problem, the com-
putation offloading ratio, the processor clock rate, the bandwidth
allocation, as well as the transmit power are taken into account
for the optimization which minimizes the weighted sum of the

https://doi.org/10.1016/j.jpdc.2022.09.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.09.006&domain=pdf
mailto:lbliao@stu.xmu.edu.cn
mailto:laiyx@xmu.edu.cn
mailto:yang@xmu.edu.cn
mailto:whzeng@xmu.edu.cn
https://doi.org/10.1016/j.jpdc.2022.09.006

L. Liao, Y. Lai, F. Yang et al. Journal of Parallel and Distributed Computing 171 (2023) 28–39
execution delay and the energy consumption for the computa-
tion offloading problem in [11]. To improve the delay performance,
the general dependency among tasks is analyzed and a genetic
algorithm-based solution was adopted in [2]. Recently, the compu-
tation offloading in UAV-assisted multi-user MEC scenarios is also
discussed by [38].

In the previous works, however, all the tasks are assumed to be
equally important, and they neglect the fact that the computation
tasks are of different importance to users. For example, in MDs,
security tasks (such as road detection, and vehicle detection) have
the highest priority, followed by real-time tasks (such as games,
AR / VR), and the lowest priority for non-real-time tasks (such as
user behavior analysis task). Moreover, the queue waiting and ex-
ecution delay on the MEC servers should also be considered when
solving the optimal offloading problem. A high-performance com-
putation offloading scheme that tails for the priority-based tasks
and resource-constraint MEC servers is highly required.

The challenges of computation offloading in MEC systems lie in
three folds: 1) The mobile network with edge servers is stochas-
tic and dynamic. The task execution is affected by multiple factors,
such as the channel state information (CSI), and the task queue
state information. So the cost and performance of computation
tasks change with the states and the execution modes of MDs and
edge servers; 2) The energy consumption of MDs is constrained
by the battery capacity. Hence the transmit power and CPU fre-
quency of the MDs should be reasonably scheduled to save energy
when offloading the computation tasks; 3) As the states evolve in
a continuous space, one offloading decision will influence the lat-
ter one. Thus, the delay-energy tradeoff optimization problem is
a long-term mixed-integer linear programming problem (LT-MILP),
which has been proven to be NP-hard [20].

In this paper, we propose an efficient computation offloading
scheme, called double reinforcement learning computation offload-
ing (DRLCO), in resource-constraint MEC systems. Our scheme in-
cludes two aspects of optimization objectives: 1) To minimize the
weighted sum of the execution delay and the energy consumption
of computation tasks in the long-term; 2) To improve the users’
QoE by reducing the delay of important tasks. Both the MDs and
MEC servers are assumed resource-limited, and the MEC server can
provide computational support for multi-MDs to handle tasks with
priorities. Due to the stochastic and dynamic nature of the MEC
system, we reformulate the computation offloading problem as a
Markov Decision Process (MDP) problem and solve it by utilizing
reinforcement learning techniques. The main contributions of this
work are summarized as follows:

• We consider a scenario where both the MEC server and MDs
are resource-constraint. And we develop a computation of-
floading model, including the offloading controller, the task
execution queue on the MEC server and MD, and the task
transmission queue between the MEC server and MD. Besides,
different types of tasks have different execution priorities in
the MEC system.

• In this paper, the optimization goal of computation offload-
ing is defined as reducing task execution delay and mobile
device energy consumption, and then a double reinforcement
learning computation offloading algorithm is proposed. Specifi-
cally, we decompose the computation offloading process into
power scheduling process and task offloading process. In the
process of power scheduling, we propose a Deep Deterministic
Policy Gradient (DDPG) based approach to reduce the energy
consumption of MDs by scheduling the transmit power and
CPU frequency of the MDS. In the process of task offloading,
we propose a double Deep Q Network (DQN) based approach
to reduce the execution delay of tasks by making offloading
decisions for computing tasks. And an adaptive prioritized ex-
29
perience replay algorithm is proposed to improve the model
training efficiency. Besides, the task queues are arranged and
sorted according to their priorities to reduce the waiting delay
and improve the users’ QoE.

• We conduct extensive experiments to evaluate the perfor-
mance of the proposed algorithms. The simulation results
verify that our approach outperforms other state-of-the-art
schemes. It reduces the delay by 48% and the energy consump-
tion by 53% compared with other schemes.

The rest of this paper is organized as follows. Section 2 dis-
cusses the related works. Section 3 presents the system model.
Section 4 formulates the cost minimization problem and reformu-
lates it as an MDP problem. Section 5 presents the detailed Double
DQN based approach and DDPG based approach, which obtains the
optimal tasks offloading policy and schedules the transmit power
and CPU frequency of the MDs. Section 6 evaluates the perfor-
mance of the proposed method based on extensive simulations.
Finally, section 7 concludes the paper and gives some future direc-
tions.

2. Related work

Existing research on computation offloading in MEC systems
can be roughly classified into three categories according to the op-
timization objectives, i.e., the delay-optimal computation offload-
ing, the energy-optimal computation offloading, and the energy-
delay tradeoff computation offloading.

For delay-sensitive applications, improving the delay perfor-
mance is the main objective of computation offloading. Liu et al.
[23] proposed a one-dimensional search algorithm to minimize the
total delay. Meng et al. [27] modeled the computation offload-
ing problem as an infinite level average cost MDP and derived a
closed-form multi-level water-filling computation offloading pol-
icy to minimize the average delay in long term. Qian et al. [29]
aimed to reduce the transmission delay by improving the spec-
trum utilization with the non-orthogonal multiple access (NOMA)
technology. Besides, Apostolopoulos et al. [4] proposed an offload-
ing strategy based on non-cooperative game theory to achieve
delay-optimal in the multi-MDs scenario. Chen et al. [9] applied
reinforcement learning technology to the process of computing un-
loading and proposed an Advanced DQN algorithm. The algorithm
improves the original DQN by adding a priority buffer mechanism
and an expert buffer mechanism.

For the energy-optimal computation offloading problem, Ka-
moun et al. [18] proposed an offloading strategy based on the con-
strained MDP to minimize the energy consumption under a delay
constraint. Wang et al. [35] derived a convex optimization-based
method by considering time-varying channels to reduce the en-
ergy consumption of transmissions. MDs have strict requirements
for energy consumption, due to the limitation of battery capac-
ity. Hence the energy minimization problem in the scenario of
multi-MDs is also investigated [39,37]. Zhou et al. [39] proposed
a distributed solution based on the consensus alternating direction
method of multipliers (ADMM), in which the energy minimization
problem is decomposed into a bunch of subproblems distributed
on MDs and solved in parallel. Yao et al. [37] proposed an opti-
mal total energy consumption algorithm (OTCA) based on bipartite
matching to reduce the system energy consumption, and an opti-
mal energy consumption assignment algorithm (OECAA) to reduce
the energy consumption of MDs. Huang et al. [16] proposed an
edge computing offload model for wireless charging, in which the
MDs use the energy obtained by wireless charging to perform
computation tasks and computation offloading. And the author
proposes a Deep Reinforcement learning-based Online Offloading

L. Liao, Y. Lai, F. Yang et al. Journal of Parallel and Distributed Computing 171 (2023) 28–39

Fig. 1. The architecture of computation offloading model.
(DROO) framework, which uses the experience replay mechanism
to learn binary offloading decisions.

Furthermore, some works [25,15,13,10,12] take the energy con-
sumption and delay into consideration at the same time and stride
a tradeoff between them. Mao et al. [25] adopted a Lyapunov
optimization-based offloading algorithm to minimize the total cost
which consists of delay and energy consumption. To minimize both
the delay and energy consumption, Dinh et al. [13] proposed a lin-
ear relaxation-based approach and a semidefinite relaxation (SDR)-
based approach to jointly optimize the offloading decision and the
CPU frequency of MD. Chen et al. [10] solved the joint optimiza-
tion problem in the multi-MDs scenarios by non-cooperative game
theory. In the same case, Ding et al. [12] proposed a decentralized
computation offloading algorithm by jointly deciding the offload-
ing mode, CPU frequency, and transmit power. Alfakih et al. [3]
proposed a SARSA-based computation offload algorithm to mini-
mize energy consumption and computing delay. Song et al. [33]
defined the computation offloading process as a multi-objective
Markov decision process, and proposed a multi-objective reinforce-
ment learning (MORL) algorithm based on DQN to reduce energy
consumption and computation delay.

Most of the above-mentioned delay-energy optimal schemes
do not consider the relationships between the types of tasks and
users’ QoE. Different from existing research, in this paper we focus
on the computation offloading of tasks with different priorities in
the MEC systems. To minimize the delay and energy consumption,
an algorithm based on reinforcement learning is proposed for the
computation offloading.

3. System model

In this section, we first introduce the system model studied in
this paper, and then elaborate on the computation model and the
tasks queue model.

3.1. MEC system model

In [23,27,1], different MEC systems are proposed for different
edge scenarios. In the paper, we consider computation offloading
problems in a confined edge network/space (e.g. an enterprise, a
campus, a home), and conduct a MEC system with one MEC server
that can provide computational support for multi-MDs. As shown
in Fig. 1, the MD can execute its computation tasks in two differ-
ent approaches: 1) executes locally at the MD, and 2) offloads the
computation to the MEC server via wireless transmissions.

In our computation offloading model, the MD contains three
parts: an offloading controller, a transmission queue, and a local
execution queue. The offloading controller is in charge of mak-
ing the offloading decision for the computation task; the execution
and transmission queues set the orders of tasks when executing
30
Table 1
Main notations in this paper.

Notation Description

T the time slot set

m(b, s, c) computation task with priority b, data size s, and complexity c
I i
t offloading indicator of task i at time t
f t
l CPU frequency of the MD at time t

Dt,i
l local execution delay of task i at time t

Et,i
l execution energy consumption of task i at time t

rt transmission rate at time t
gt the channel gain between the MD and the MEC server at time t
pt

tx the transmit power of the MD at time t
Di

tx transmission delay of task i
Ei

tx transmission energy consumption of task i
f s CPU frequency of the MEC server

Di
s execution delay at MEC server of task i

qt
l ,qt

tx,qt
s state information of local queue, transmit queue, and server

queue

Di
w waiting delay of task i

costi
t execution cost of task i at time t

S p , Ap, rp state space, action space, and reward function of the MDP model
for power scheduling problem

So, Ao, ro state space, action space, and reward function of the MDP model
for task offloading problem

μψ(sp) the policy function of actor model of power scheduling algorithm

Q θ (sp ,ap) the Q function of critic model of power scheduling algorithm

Q ξ (so,ao) the Q function of critic model of task offloading algorithm

W si the weight of sample i
Pi the sampling probability of sample i

or transmitting orders. And the MEC server executes the tasks re-
ceived from the MDs. Time is slotted with duration τ , and the time
slot index set is T = {0, 1, ..., T }. For ease of reference, we list the
key notations of our system model in Table 1.

3.2. Computation model

Without any loss of generality, the computation task is denoted
as a tuple m(b, s, c), where b is the priority of the task, s (in bits)
is the data size of the task, and c is the number of CPU cycles re-
quired to process one bit of task. The offloading indicator of the
task is denoted by I ∈ {0, 1}, where I = 0 indicates the local exe-
cution approach and I = 1 stands for the offloading approach.

3.2.1. Local execution model
With the dynamic voltage frequency scaling (DVFS) techniques

[30], MDs can dynamically adjust their CPU frequency based on

L. Liao, Y. Lai, F. Yang et al. Journal of Parallel and Distributed Computing 171 (2023) 28–39
demands, which affects the delay and energy consumption of the
task [25]. Specifically, the CPU frequency of the MD is denoted by
f t
l , and the local execution delay of task i: mi(bi, si, ci) is denoted

by:

Dt,i
l = wi

f t
l

, (1)

where wi = sici presents the number of CPU cycles required to
execute the task, and f t

l is constrained by fmax , i.e., f t
l ≤ fmax, t ∈

T . The energy consumption of task executing at the MD is denoted
by:

Et,i
l = k(f t

l)2 Dt,i
l , (2)

where k is the effective switched capacitance that depends on the
chip architecture [8].

3.2.2. Task offloading model
The task offloading process is divided into two phases: the

transmission phase and the execution phase.
In the transmission phase, the task is transmitted from the MD

to the MEC server. According to the Shannon formula, the trans-
mission rate at time slot t is:

rt = Blog2(1 + pt
tx gt

N0
), (3)

where B is the bandwidth, N0 is the noise power at the receiver,
and pt

tx is the antenna transmit power of the MD at time slot t
which is constrained by pmax , i.e., pt

tx ≤ pmax, t ∈ T . Besides, the
channel gain gt between the MD and the MEC server at the time
slot t can be expressed as:

gt = G0(
d0

dt
)

γ

, (4)

where dt is the distance between the MD and the MEC server,
which is changing as time goes by, d0 is the antenna far-field test
distance of the base station to which the MEC server is connected,
G0 is the channel gain constant, and γ is the path-loss exponent.

Similar to other works [23,25,27], the transmission delay of
sending the results back to the MD from the MEC server is as-
sumed to be negligible. Therefore, the transmission delay of task i
is related to the data size and uplink rate of each time slot. For
simplicity, we assume the transmission rate is fixed during the
transmission of the task. Thus, the transmission delay can be ex-
pressed as:

Di
tx = si

rt
. (5)

The energy consumption is given by

Ei
tx = pt

tx Di
tx. (6)

In the execution phase, the task is executed at the MEC server.
Similar to other works, the CPU frequency of the MEC server f s is
assumed to be fixed. Hence the execution delay is:

Di
s = wi

fs
. (7)

3.3. Tasks queue model

For resource-constrained MEC systems, the queue status infor-
mation (QSI) is a significant factor affecting the performance of
offloading decisions. Let qt , qt

tx, qt
s represent the LQSI and TQSI at
l

31
the MD, and RQSI at the MEC server, respectively. Assume that the
number of tasks generated in each time slot is random and obeys
the i.i.d. χ(t) with E[χ] = χ̄ , where χ̄ is the average generating
rate of tasks. Thus, the number of computation tasks generated in
each time slot can be expressed as χ(t)τ , τ is the duration of a
time slot.

We also use different attributes to represent the state of differ-
ent queues, i.e., the state of the execution queue is represented by
the workload of the tasks and that of the transmission queue is
represented by the data size. Hence, the dynamics of the LQSI are
given by:

qt+1
l = qt

l +
χ(t)τ∑
i=1

(1 − I)wi − f t
l τ . (8)

And the dynamics of the TQSI is given by:

qt+1
tx = qt

tx +
χ(t)τ∑
i=1

Isi − rtτ . (9)

The dynamics of the SQSI is given by:

qt+1
s = qt

s +
n∑

i=1

wi − f sτ , (10)

where n is the number of tasks received by the MEC server in time
slot t .

The waiting delay of tasks in the queue is not negligible for
the MEC systems. The waiting delay of task i can be calculated by
summing the execution or transmission delay of previous tasks in
the queue. In the local execution queue, the task waiting delay can
be expressed as:

Di
w,l =

i−1∑
j=0

D j
l , (11)

where D j
l is the execution delay of task j at MDs. Similar to the

local execution queue, the waiting delay of tasks in the transmis-
sion queue Di

w,tx and the server execution queue Di
w,s is obtained

by summing the delays of previous tasks.
Therefore, the total execution delay of task i can be expressed

as:

Di
tot =

{
Di

w,l + Dt,i
l , I = 0

Di
w,tx + Di

w,s + Dt,i
tx + Di

s. I = 1
(12)

Besides, the execution energy consumption of task i is defined
as Et,i = Et,i

l when I = 0, and Et,i = Et,i
tx when I = 1.

4. Problem formulation

In this section, we first introduce the execution cost of a task
and formulate the execution cost minimization (ECM) problem.
Then, we define the power scheduling and task offloading prob-
lems based on the MDP model [7].

4.1. Execution cost minimization problem

Execution delay and energy consumption are two key factors
for users’ QoE, which are adapted for optimizing the computation
offloading policy in the MEC systems. Considering the priorities of
tasks, the execution cost of task i can be expressed as:

costi
t = λbDi

tot + (1 − λ)Et,i (13)

L. Liao, Y. Lai, F. Yang et al. Journal of Parallel and Distributed Computing 171 (2023) 28–39
where λ ∈ [0, 1] is a parameter used to stride a tradeoff between
the two objectives.

Our goal is to minimize the execution cost of tasks by jointly
calculating the CPU frequency, transmission power, and task ex-
ecution mode. Given a time span of T , the ECM problem in the
long-term can be formulated as:

min lim
T →+∞

1

T

T∑
t=0

1

χ(t)τ

χ(t)τ∑
i=0

costi
t

s.t. 0 ≤ pt
tx ≤ pmax, t ∈ T ,

0 ≤ f t
mobile ≤ fmax, t ∈ T ,

(14)

where costi
t , consists of task execution delay and energy consump-

tion of the MD, is the task execution cost defined at Eq. (13).
The ECM problem is a multi-objective optimization problem

with coupled constraints, and the goal of the ECM problem is to
minimize the execution cost by scheduling CPU frequency, trans-
mission power, and task offloading mode. We decouple the ECM
problem by dividing the computation offloading process into two
processes: 1) schedule the CPU frequency and transmission power
at the beginning of each time slot to adjust the length of task
queues; 2) In each time slot, the offloading decision is made for
each computation task to reduce the execution cost of the task.
Therefore, the computation offloading problem can be decomposed
into power scheduling problem and task offloading problem. These
problems are further reformulated as MDP problems that have ad-
vantages over sequential decision-making problems.

A typical MDP model is defined as a tuple 〈S, A, r, T 〉, which
consists of a set of states S , a set of actions A, a reward function
r, and a transition function T . In the following, we define the cor-
responding components for power scheduling and task offloading
problems, respectively.

4.2. Power scheduling problem

At the beginning of each time slot of the offloading process,
the MD needs to set the CPU frequency and transmission power to
reduce the length of the task queues and the energy consumption.

4.2.1. State space
In this problem, we consider each state of state space contains

two parts: the queue state information (QSI) and the channel state
information (CSI). Specifically, we denote the state at the beginning
of time slot t as a vector, i.e., st

p = (qt , gt) ∈ S p , in which qt =
(qt

l , q
t
tx, qt

s).

4.2.2. Action space
The MD needs to choose the CPU frequency and transmit power

according to the current state st
p . And the action at time slot t can

be denoted as at
p = (f t

l , pt
tx) ∈ Ap , and the feasible action space is

A = [0, fmax] × [0, pmax].

4.2.3. Reward function
After taking action at

p , the MD can obtain the reward from the
environment. In the power scheduling process, to minimize both
queues length and energy consumption, the reward rt

p is defined
as:

rt
p = −(w1qt+1 + w2 Et), (15)

where Et is the total delay of the MD in time t , w1, w2 denote the
weights of the two objectives in the combined reward function.
32
4.2.4. Transition
According to the equations (8), (9), and (10), the state transition

probability is related to the mode of task execution and environ-
ment in time slot t .

According to the MDP model given above, the power scheduling
problem can be reformulated as a problem of finding the optimal
policy πp that maximizes the cumulative reward in the long-term.
Specifically, the definition of the reformulated problem is given as:

max
πp

T∑
t=0

ζ t−1
p rt

p, (16)

where ζp ∈ [0, 1] is a discount factor that indicates the impact of
long-term rewards on the current decision making.

4.3. Task offloading problem

For each computation task generated in any time slot, the mo-
bile device needs to select an appropriate execution mode for them
to reduce the task execution cost.

4.3.1. State space
In the task offloading problem, the state refers to the envi-

ronment information when generating a task. Each state in the
state space contains four kinds of information, including the CSI,
the CPU frequency of the MD, the QSI, and the task information.
Specifically, we denote the state as si

o = [qi, f i
l , g

i, mi(bi, si, ci)].

4.3.2. Action space
The action represents the mode of task execution, and can be

expressed as ai
o ∈ {0, 1}, where ai

o = 0 indicates local execution and
ai

o = 1 stands for computation offloading.

4.3.3. Reward function
To minimize the weighted sum of the execution delays and

energy consumption, the reward function can be defined as ri
o =

−costi , where costi is defined at eq. (13).

4.3.4. Transition
Different from the power scheduling problem, the environment

state changes after each task execution. Concretely, the CSI and
tasks vary randomly according to Gaussian distribution and QSI
varies according to equations (8), (9), and (10).

Hence, the task offloading problem can be reformulated as:

max
πo,πp

T∑
t=0

χ(t)τ∑
i=0

ζ i−1
o ri

o, (17)

where πo is the task offloading policy, and ζo ∈ [0, 1] is the dis-
count factor.

5. Reinforcement learning for computation offloading

This section presents a reinforcement learning-based approach
for the computation offloading in the MEC system. We first briefly
introduce and analyze existing reinforcement learning methods,
then we describe the DDPG algorithm which solves the power
scheduling problem [22], and the Double DQN algorithm that
solves the task offloading problem in detail [34].

5.1. Basic idea of reinforcement learning

Reinforcement learning (RL) is an important branch of machine
learning that can develop an online policy for smart agents to
maximize expected cumulative rewards by interacting with the en-
vironment. The basic idea of RL is introduced in [17], and there are

L. Liao, Y. Lai, F. Yang et al. Journal of Parallel and Distributed Computing 171 (2023) 28–39
Fig. 2. Architecture of the DDPG consists of actor model, critic model, and replay
memory [22].

three major types of RL algorithms: 1) critic-model (value-based
approach); 2) actor-model (policy-based approach); 3) actor-critic
learning approach. The critic model-based RL algorithm makes de-
cisions by calculating and comparing the value of each action.
The actor model-based RL algorithm learns a stochastic policy to
choose the action, which is suitable for continuous action space.
And the actor-critical approach utilizes value functions to conduct
agents to make decisions in a continuous action space by combin-
ing the above two methods.

To reduce the length of task queues and energy consumption,
we develop a power scheduling algorithm based on the Deep De-
terministic Policy Gradient to obtain CPU frequency and transmis-
sion power at the beginning of each time slot. Then, we present a
Double DQN-based algorithm to make offloading decisions for the
computation tasks generated in each time slot to reduce the task
execution cost. We will introduce our RL algorithm from model ar-
chitecture, decision making, and network training.

5.2. The DDPG based power scheduling algorithm

5.2.1. The architecture of DDPG
DDPG is a reinforcement learning algorithm of an actor-critic

model, which holds good performance in continuous action spaces.
The architecture of DDPG is shown in Fig. 2, which consists of
three modules: the actor model, the critic model, and the replay
memory. In the actor model and the critic model, there are two
neural networks, called evaluate network and target network, with
the same structure (5 fully connected layers) but different param-
eters. We denote μψ(sp), μψ ′ (sp) as the policy function of two
networks in actor model, and Q θ (sp, ap), Q θ ′ (sp, ap) as the Q-
function for critic model.

5.2.2. Decision making
The actor-evaluate network is responsible for interacting with

the environment and outputting action at
p = μψ(st

p) according to
the states. To avoid local optimum, Gaussian noise is added to the
output of the actor-evaluate network. After taking the action at

p ,
the environment changes to the next state st+1

p and gives rewards
rt

p according to equation (15). Besides, the interactive experience
(st

p, at
p, rt

p, st+1
p) is stored in the replay memory for training the

model.

5.2.3. Network training
In each training episode, a batch of experiences is randomly

sampled, which can reduce the correlation of experiences and ac-
celerate the network convergence [34]. We take one experience
33
(st
p, at

p, rt
p, st+1

p) as an example to introduce the training procedure
as follows.

To improve the performance of the policy function, the actor-
evaluate network is updated with the support of the critic-evaluate
network. Concretely, st

p and at
p are input into critic-evaluate

network to obtain the estimated action-value of at
p (denote as

Q θ (st
p, at

p)). According to Silver et al. [32], the actor-evaluate net-
work can be updated by minimizing the loss function:

Lψ = E(μψ(st
p)Q θ (st

p,at
p)|at

p=μψ(st
p)). (18)

Then the critic-evaluate network is trained to obtain accurate
estimated action-value. First, st+1

p is input into the actor-target net-

work and critic-target network to obtain Q-value of state st+1
p (de-

noted as Q θ ′ (st+1
p , at+1

p)), where at+1
p = μψ ′(st+1

p). Then, according
to the Bellman equation [6], the critic-evaluate network can be up-
dated by minimizing the loss function:

Lθ = E(rt
p + ζp Q θ ′(st+1

p ,at+1
p) − Q θ (st

p,at
p))2. (19)

Moreover, the parameters of the target network are fixed while
training evaluate network, which is helpful to the convergence
of the evaluate network. We update the parameters of the target
network by copying the parameters of the evaluate network. The
detailed description of the network training of the DDPG-based
power scheduling algorithm is given in Algorithm 1.

Algorithm 1 Network training of the DDPG based power schedul-
ing algorithm.
Input:

The LQSI ql , the TQSI qtx , the SQSI qs , and channel gain g .
Output:

The policy πp .
1: Initialize the networks of actor and critic model.
2: for e ← 0 to M A X_E P I S O D E do
3: Sample a batch of transitions from the replay memory according to Adaptive

Prioritized Experience Replay Algorithm;
4: for t ← 0 to B AT C H_S I Z E do
5: Obtain experience (st

p, at
p , rt

p, st+1
p);

6: Given st
p , at

p , the critic-evaluate network outputs Q θ (st
p , at

p);
7: Update the actor-evaluate network according to Eq. (18);
8: Given st+1

p , the actor-target network outputs at+1
p ;

9: Given st+1
p , at+1

p , the critic-target network outputs Q θ ′ (st+1
p , at+1

p);
10: Update the critic-evaluate network according to Eq. (19);
11: if e >U P D AT E_E P I S O D E then
12: Copy the parameters of evaluate network to target network;
13: end if
14: end for
15: end for

5.3. The double DQN based offload decision algorithm

5.3.1. The architecture of double DQN
Double DQN is a critic model-based RL algorithm, which is suit-

able for discrete action prediction. The architecture of Double DQN
is shown in Fig. 3, which consists of three modules, including
evaluate network, target network, and replay memory. The eval-
uate network and the target network are neural networks with the
same structure (5 fully connected layers) but different parameters.
We denote Q ξ (so, ao), Q ξ ′ (so, ao) as Q-function for the two net-
works.

5.3.2. Decision making
In Double DQN, the evaluate network is in charge of decision

making. When the computation task is generated, the state si
o is

input into the evaluation network to obtain the offloading decision
ai

o by

L. Liao, Y. Lai, F. Yang et al. Journal of Parallel and Distributed Computing 171 (2023) 28–39
Fig. 3. The architecture of Double DQN consists of evaluate network, target network,
and replay memory [34].

ai
o = arg max

a
(Q ξ (si

o,a)). (20)

After taking action ai
o , the system changes to the next state

si+1
o and gives rewards ri

o . Also, the replay memory model is con-
structed to store a series of historical experiences, i.e. (si

o, ai
o, ri

o,

si+1
o).

5.3.3. Network training
Here we take one experience (si

o, ai
o, ri

o, si+1
o) as an example to

describe the training procedure. First, si
o and si+1

o are input into
the evaluate network to obtain the estimated action-value of ai

o
(denote as Q θ (si

o, ai
o)) and the action ai+1

o with maximum Q-value
under si+1

o state. The ai+1
o can be obtained by:

ai+1
o = arg max

a
(Q ξ (si+1

o ,a)). (21)

Then, we leverage the target network to obtain the Q-value of
state si+1

o : Q ξ ′ (si+1
o , ai+1

o). According to the Bellman equation [6],
the parameters of evaluate network can be updated by minimizing
the loss function:

Lξ = E(ri
o + ζo Q ξ ′(si+1

o ,ai+1
o) − Q ξ (si

o,ai
o))

2. (22)

Similar to the DDPG algorithm, the parameters of the target
network are fixed when training the evaluate network and updated
by copying the parameters of the evaluate network. The detailed
description of the network training of the Double DQN-based task
offloading algorithm is given in Algorithm 2.

5.4. The adaptive prioritized experience replay algorithm

In the DDPG and double DQN algorithms, agents sample uni-
formly from the replay buffer which can not only meet the as-
sumption of the independent distribution of samples but also ac-
celerate convergence. However, uniform sampling ignores the dif-
ferences in importance between samples. To improve the model
training efficiency, we propose an adaptive prioritized experience
replay algorithm. Concretely, we first assign a weight to each ex-
perience and then calculate its sampling probability based on the
weights.

We define the weight function W s to represent the importance
of samples. Specifically, the weight function is mainly composed
of two parts: the reward weight of samples W r and the sampling
frequency F s.

The reward weight of samples W r can be denoted as follows:

W ri = |T Di | × Ri + α, (23)
34
Algorithm 2 Network training of the Double DQN based offload
decision algorithm.
Input:

The LQSI ql , the TQSI qtx , the SQSI qs , the CPU frequency fl , the transmit rate r ,
and task information m(b, s, c).

Output:
Task offloading policy πo .

1: Initialize the evaluate networks and critic networks.
2: for e ← 0 to M A X_E P I S O D E do
3: Sample a batch of transitions from the replay memory according to Adaptive

Prioritized Experience Replay Algorithm;
4: for t ← 0 to B AT C H_S I Z E do
5: Given si+1

o , the evaluate network outputs ai+1
o = arg maxa(Q ξ (si+1

o , a)));
6: Given si

o, ai
o , the evaluate network outputs Q ξ (si

o, ai
o);

7: Given si+1
o , ai+1

o , the target network outputs Q ξ ′ (si+1
o , ai+1

o);
8: Update the evaluate network according to Eq. (22);
9: if e >U P D AT E_E P I S O D E then

10: Copy the parameters of evaluate network to target network;
11: end if
12: end for
13: end for

where T Di denotes temporal difference error of sample i, which
is represented by formula rt

p + ζp Q θ ′ (st+1
p , at+1

p) − Q θ (st
p, at

p) in
power scheduling algorithm and by formula rt

p + ζp Q θ ′ (st+1
p ,

at+1
p) − Q θ (st

p, at
p) in offload decision algorithm. We set α to a

small positive number to avoid sampling failure when TD error
equals 0. To facilitate calculation, the rewards ri are normalized to
[-1, 1], and the weight of reward R can be expressed as:

Ri = log(|ri | + 1) + 1. (24)

To prevent the weight of some samples from being too high,
we add the sampling frequency to the weight function, which is
denoted as:

F si = e−(numi)
x
, (25)

where numi represents the sampling times of samples i and x is a
constant. Then, the weight function W s can be denoted as:

W si = W ri + κ F si, P (26)

where κ is a hyper-parameter used to stride a tradeoff between
the two functions. Using the above weight function, we can calcu-
late the sampling probability of the sample by:

Pi = (W si)
β∑

i(W si)
β

(27)

where β ∈ {0, 1} is a random sampling factor. Concretely, the re-
play buffer adopts uniform sampling when β = 0 and priority sam-
pling when β = 1. In addition, to reduce the sampling complexity,
a more effective update and sampling implementation, sum tree,
is adopted in this algorithm [31]. The detailed description of the
adaptive prioritized experience replay is given in Algorithm 3.

Algorithm 3 Adaptive prioritized experience replay algorithm.
Input:

Batch size of replay memory K .
Output:

K training samples.
1: Initialize the replay memory according to equations (26).
2: for i ← 0 to K do
3: Sample a transition from the replay memory according to equations (27)

based on sum tree;
4: Calculate TD error of transition;
5: Update sample weight equations (26);
6: end for

L. Liao, Y. Lai, F. Yang et al. Journal of Parallel and Distributed Computing 171 (2023) 28–39
Algorithm 4 The Double RL computation offloading policy.
1: Initialize parameters for DDPG and Double DQN.
2: while t ∈ T do
3: Observe state st

f from environment.

4: Chose CPU frequency and transmit power at
f according to DDPG.

5: while i ∈ χ(t)τ do
6: Observe state si

o from environment.
7: Make offloading decision ai

o according to Double DQN.
8: Sort task queue, execute task, and transmit task.
9: Obtain reward ri

o and transfer state into si+1
o .

10: Store (si
o, ai

o, ri
o, si+1

o) for training Double DQN.
11: end while
12: Obtain reward rt

f and transfer state into st+1
f .

13: Store (st
f , at

f , rt
f , st+1

f) for training DDPG.
14: if t >B AT C H_S I Z E then
15: Train DDPG model.
16: Train Double DQN model.
17: end if
18: end while

5.5. The queue sorting algorithm

Considering the difference in the importance of tasks, we de-
velop an algorithm to enhance the users’ QoE by sorting the exe-
cution order of tasks in the queues. The sorting algorithm utilizes
four attributes of tasks, including the workload, data size, priority,
and the waiting delay.

M = (
mij

)
n×4, where mij is the j-th attribute of the i-th task,

denotes the attributes of the tasks. By normalizing each column,
the matrix M is transformed into U = (

uij
)

n×4. Then, the weight
matrix of the tasks can be expressed as:

W = U K T, (28)

where K is the weight coefficient vector of task attributes, and it
has different values for different queues. Specifically, we prioritize
the data size in the transmission queue and the workload in the
execution queue.

Those algorithms above are combined to achieve the optimal
delay-energy computation offloading for the considered MEC sys-
tem. The whole procedure of DRLCO is presented in Algorithm 4.
In DRLCO, for any time slot t in the computation offloading pro-
cess, the MD obtains the state information st

p at the beginning of
the time slot. Then st

p is input into Algorithm 1 to obtain the CPU
frequency and server transmission power. For any task i generated
in time slot t , the MD obtains the environment information si

o and
sends the task to the execution queue or transmission queue ac-
cording to Algorithm 2. Then, the task queues are sorted by the
queue sorting algorithm when a task enters the queue. Besides, the
interaction experience between mobile and environment is stored
for training DDPG and Double DQN models.

6. Performance analysis

In this section, we first introduce the simulation setup and
the baselines. Then the performance of our computation offload-
ing policy is evaluated through extensive simulations. The schemes
are implemented in Python 3.6 and experiments are run on a com-
puter with Intel Core i5 CPU, 2.9 GHz, NVIDIA GeForce GTX 1660
GPU, 16 G RAM under Windows 10.

6.1. Simulation setup

The default simulation settings are set as follows unless oth-
erwise stated. The CPU frequency f s of the MEC server is set at
50 GHz (2.5 GHz per core, 20 cores), and the average generating
rate of tasks χ̄ is 5 tasks per second [27]. According to [28], the
data size s of each task is set between 500 Kbits and 2 Mbits, and
35
Table 2
Training parameters for DRLCO.

Parameter Value

Number of MDs 35
Number of MEC server 1
Task generate rate of MDs 5 per time slot
Time slot duration 1 s
Length of time slot 10
Learning rate for actor of DDPG 0.005
Learning rate for critic of DDPG 0.001
Learning rate for Double DQN 0.01
Batch size for DDPG 64
Batch size for Double DQN 32
Discount factor ζp, ζo both 0.9

complexity c is between 500 and 2000 cycles per byte. Besides,
the CPU frequency of MD is constrained by f max = 2 GHz and the
maximum antenna transmit power Pmax

tx = 2 W. And the effective
switched capacitance is set as k = 10−28 according to [25]. Fur-
thermore, we set the wireless channel model according to [26].
Concretely, the antenna far field test distance d0 = 1 m, the chan-
nel gain constant G0 = 10−3, path loss exponent γ ∈ (1.6, 3.5), the
wireless bandwidth B = 10 MHz, and noise power N0 = 10−13 W.
Besides, Table 2 describes the parameter settings for the training
of DRLCO.

6.2. Compared schemes

To evaluate the performance of the proposed computation of-
floading policy, six baselines are introduced as follows:

• Local Execution: The mobile device executes all computation
tasks locally with the maximum CPU frequency.

• Server Execution: The mobile device transmits all computation
tasks to the MEC server with the maximum transmit power.

• Greedy Offloading: According to the execution delay and trans-
mission delay, the mobile device selects the execution mode
with the least cost for each computing task.

• LODCO Algorithm [25]: Both the computation power and the
computation offloading power are obtained by Lyapunov opti-
mization. And the offloading decision is obtained according to
the greedy algorithm.

• TSO Algorithm [23]: Offloading decision is made according
to offloading probability which is obtained by the one-
dimensional linear search.

• MORL Algorithm [33]: Offloading decision is made by multi-
objective reinforcement learning to reduce the execution delay
and energy consumption.

6.3. Performance evaluation

6.3.1. Overall performance
Next, we evaluate the performance of six offloading methods in

terms of delay, energy consumption, and execution cost.
Table 3 shows the overall performance of different approaches.

Compared to other methods, Local Execution has the highest ex-
ecution delay (11.396 s) and the highest execution cost (11.701),
which indicates that the MD cannot fully meet the computational
requirements for performing computation tasks. In contrast, Server
Execution offloads all tasks to the MEC server, which greatly re-
duces the delay (1.923 s) but incurs high energy consumption
(0.995 × 10−3 J). This is because the transmission task consumes a
large amount of energy, resulting in high execution costs (2.918).
Besides, Greedy Execution has significant reduction in delay (about
23% reduction) and energy consumption (about 31% reduction)

L. Liao, Y. Lai, F. Yang et al. Journal of Parallel and Distributed Computing 171 (2023) 28–39

Table 3
Performance of the computation offloading schemes.

Schemes Delay (S) Energy (10−3 J) Total cost Decision delay (10−3 S) Training delay (10−3 S)

Local Execution 11.396 0.305 11.701 N/A N/A
Server Execution 1.923 0.995 2.918 N/A N/A
Greedy Offloading 1.668 0.680 2.348 0.516 N/A
LODCO 1.639 0.643 2.282 1.262 N/A
TSO 1.425 0.724 2.149 0.938 N/A
MORL 1.341 0.527 1.868 0.739 3.347
DRLCO 1.002 0.467 1.469 0.997 6.153
Fig. 4. Learning curve of three reinforcement learning methods.

compared with MEC Server Execution. LODCO reduces the time de-
lay to 1.639 s and the energy consumption to 0.643 × 10−3 J. TSO
performs well on the delay (13% decrease) while failing to con-
trol the energy consumption (12% increase) of the MD compared
with LODCO. This is because TSO focuses on reducing task delay
and ignores energy consumption. In addition, the MORL algorithm
can effectively reduce delay (1.341 s) and energy consumption
(0.527 × 10−3 J). However, MORL only focuses on the impact of
task offloading mode on execution cost, while ignoring the impact
of CPU frequency and transmission power of the MD. DRLCO has
the lowest execution cost (1.469), which is about 87% and 50%
reduction compared to Local Execution and Server Execution. And
DRLCO achieves the lowest execution delay (1.002 s) compared
with other baselines. It is because our task offloading algorithm
can make dynamic decisions based on environmental information.
Our method also obtains a good performance in energy consump-
tion (0.417 × 10−3 J) because our power scheduling algorithm can
dynamically adjust the CPU frequency and transmit power of the
MD.

To discuss the overhead of three reinforcement learning mod-
els, we record the decision delay of different algorithms. The delay
of our algorithm to make a decision is 0.938 × 10−3 s, which is
far below the task execution delay of 1.002 s. Besides, we com-
pared the training delay of DRLCO and MORL. The DRLCO train-
ing an episode takes 6.153 × 10−3 s and the MORL training takes
3.427 × 10−3 s. This is because the MORL model has fewer param-
eters for decision-making.

Fig. 4 shows the learning curves of DRLCO, MORL and DRLCO
without Adaptive Prioritized Experience Replay (DRLCO WOP). As
shown in the figure, the DRLCO WOP has the slowest convergence
speed (converge at episode 180), which shows that Algorithm 3
can accelerate the convergence of the model. In addition, the MORL
starts to converge at episode 100, and the final reward is about -
130.

Fig. 5 depicts the average reduced delay of the tasks with differ-
ent priorities over six approaches compared to Local Execution. In
this experiment, the execution delay of tasks with different priori-
36
Fig. 5. Execution delay vs. different task priorities.

ties is different, which is due to that the data size and complexity
are random when generating tasks.

Therefore, we compared the delay reduction of different prior-
ities of tasks of each algorithm relative to Local Execution. We can
find that the six baselines did little to reduce execution delays for
high-priority tasks. In contrast, in our algorithm, the higher the
task priority, the higher the delay reduction. Tasks with low to
high priority are each reduced by 8.663 s, 8.937 s, 9.134 s, and
9.298 s. This is because we developed a queue sorting algorithm
and considered the priority of the task when making the offload-
ing decisions to reduce the delay of high-priority tasks.

6.3.2. Parameter tuning
We firstly study the effects of different parameters on the total

reward for task execution. Concretely, we discuss different batch
sizes, memory sizes, and learning rates for both power scheduling
and task offloading algorithms. In Fig. 6(a), we plot the total re-
ward of task execution when the batch size of DDPG varies from
32 to 128. It can be seen from the figure that the three curves
converge at about 150 episodes, and the total rewards stabilized
around -90 at the final. We find that the curve converges the
fastest (about 110 episodes) when batch size = 32 but the lower
total reward at final. It is because small batch size can store little
experience, and the reward drops when a new state is sampled.
Also, there is a fact that a larger batch size consumes more time
for training. Thus, we set batch size = 64 for the power scheduling
algorithm.

Then we present the simulation results in Fig. 6(b) with the size
of replay memory ranging from 1000 to 10000. We find that the
larger the memory size, the slower the convergence rate of our al-
gorithm, but the greater the total reward at the final since a large
memory size can reduce the correlation of sampled data. However,
the storage space occupied by replay memory is positively related
to its size. Therefore, we set the memory size to 5000 for our al-
gorithm.

Fig. 6(c) and Fig. 6(d) plot the effects of different learning rates
(range from 0.001 to 0.01) on the total reward for the actor and

L. Liao, Y. Lai, F. Yang et al. Journal of Parallel and Distributed Computing 171 (2023) 28–39

Fig. 6. Impacts of different parameters of power scheduling algorithm on the total reward, including (a) batch size, (b) memory size, (c) learning rate of actor model, and (d)
learning rate of critic model.

Fig. 7. Impacts of different parameters of task offloading algorithm on the total reward, including (a) batch size, (b) memory size, (c) learning rate.

Fig. 8. Performance of task execution with different (a) average generating rate of tasks, (b) frequencies of the MEC server, and (c) number of the MDs.
critic model. It can be seen from the two figures that the higher
the learning rate, the faster the curve converges. In Fig. 6(c), we
find that the model received the highest total reward (about -
80) when the learning rate of actor was 0.005. In Fig. 6(d), the
curve (learning rate = 0.001) converges the slowest (converge at
150 episodes), but obtains the highest total reward (about -75) at
final. To maximize the total reward, the learning rates of the actor
and critic models are set to 0.005 and 0.001.

We also tuned the parameters of the task offloading algorithm.
Fig. 7(a) illustrates the effects of the batch size on the total reward.
We find that the three curves fall into the local optimum between
50 and 150 episodes, which may be due to the agent’s insufficient
exploration of the environment. But the two curves (batch size =
32 and 64) perform well after 150 episodes. Thus, we set the batch
size to 32 considering the training time.

Fig. 7(b) depicts the convergence performance when the size of
replay memory varies from 1000 to 10000. After 250 episodes, the
MD received the highest total reward (about -75) when memory
size = 5000, while the MD received the lowest total reward (about
-90) when memory size = 1000. Thus, we set the memory size to
1000 to reduce the storage space.

Finally, we present the simulation results in Fig. 7(c) with the
learning rate ranging from 0.005 to 0.05. We can find that the
37
curve (learning rate = 0.005) converges the slowest, while the
curve (learning rate = 0.05) fluctuates the most, which is related
to the nature of deep learning. Then, we set the learning rate to
0.01.

Besides, we find that the parameter tuning of the task offload-
ing algorithm has a greater effect on the convergence rate than
that of the power scheduling algorithm when comparing Fig. 6 and
Fig. 7. This is mainly because the task offloading algorithm has a
direct impact on the execution mode of the task.

6.3.3. Impact factors
We also vary several critical factors, i.e., the average generating

rate of tasks χ̄ , the CPU frequency of the MEC server f s , and the
number of the MDs to study their impact on the DRLCO.

Fig. 8(a) illustrates the impact of the average generating rate
of tasks χ̄ of the MD, which varies from 5 to 10 per second. We
find that the execution cost of the tasks increases gradually as χ̄
increases. Compared with Server Execution, DRLCO reduces the ex-
ecution cost by half. This performance can be attributed to two
features of our algorithm: 1) maintain the load balance between
the MEC server and the MD; 2) maintain a balance between power
consumption and delay.

L. Liao, Y. Lai, F. Yang et al. Journal of Parallel and Distributed Computing 171 (2023) 28–39
Fig. 8(b) depicts the impact of the CPU frequency of the MEC
server f s on the execution cost. We can find that the higher the
CPU frequency of the server, the lower the execution cost of the
task. When f s = 50 GHz (2.5 GHz per core, 20 cores), the execution
costs of our algorithm are reduced by 15%, 32%, 35%, 41%, 48% and
87% than other six baselines.

Fig. 8(c) depicts the impact of the number of MDs on the exe-
cution cost. We can find that the higher the number of MDs, the
higher the execution delay of the task due to the number of tasks
increased. When there are 20 MDs, the execution cost of our al-
gorithm is reduced by 21%, 30%, 34%, 39%, 55%, and 90% than the
other six baselines.

7. Conclusion

In this article, we model a computation offloading framework
for the resource-constrained MEC system. Then, we take task ex-
ecution delay and energy consumption as optimization objectives
which are key factors to measure the QoE of mobile users. To min-
imize both the execution delay and energy consumption, we pro-
pose a double reinforcement learning computing offloading algo-
rithm that can jointly schedule CPU frequency, transmission power,
and task offloading mode. As compared with other benchmark
schemes, simulation results have demonstrated that the proposed
algorithm can effectively reduce the execution delay of the tasks
and the energy consumption of the MD.

For future work, we are going to investigate the computation
offloading problem in the MEC scenario with multiple MEC servers
and multi-MDs. We will consider the problem of resource schedul-
ing and the cooperation between the MDs in this scenario.

CRediT authorship contribution statement

This paper studies the problem of computation offloading in
resource constrained MEC systems, and proposes a double rein-
forcement learning computation offloading algorithm. Experiments
show that our method reduces the delay by 48% and the energy
consumption by 53%. In this work, the main contribution of Liao
is experiments and write paper. The experiment was conducted
under the guidance of Lai. In addition, Yang and Zeng provided
technical guidance and financial support.

We declare that the material presented in this manuscript has
not been previously published, except in abstract form, nor is it
simultaneously under consideration by any other journal.

Declaration of competing interest

We declare that we have no financial and personal relationships
with other people or organizations that can inappropriately influ-
ence our work, there is no professional or other personal interest
of any nature or kind in any product, service and/or company that
could be construed as influencing the position presented in, or the
review of, the manuscript entitled “Online Computation Offload-
ing with Double Reinforcement Learning Algorithm in Mobile Edge
Computing”.

Acknowledgments

This work is partially supported by the Natural Science Foun-
dation of Guandong (2021A1515011578), the Funding of Longyan
Institute of Industry and Education Integration, Xiamen University
(20210302), Natural Science Foundation of China (61872154), the
Natural Science Foundation of Fujian (2018J01097), and Shenzhen
Basic Research Program (JCYJ20190809161603551).
38
References

[1] A.A. Al-Habob, A. Ibrahim, O.A. Dobre, A.G. Armada, Collision-free sequential
task offloading for mobile edge computing, IEEE Commun. Lett. 24 (2019)
71–75.

[2] A.A. Al-Habob, O.A. Dobre, A.G. Armada, S. Muhaidat, Task scheduling for mo-
bile edge computing using genetic algorithm and conflict graphs, IEEE Trans.
Veh. Technol. 69 (2020) 8805–8819.

[3] T. Alfakih, M.M. Hassan, A. Gumaei, C. Savaglio, G. Fortino, Task offloading and
resource allocation for mobile edge computing by deep reinforcement learning
based on sarsa, IEEE Access 8 (2020) 54074–54084.

[4] P.A. Apostolopoulos, E.E. Tsiropoulou, S. Papavassiliou, Cognitive data offload-
ing in mobile edge computing for Internet of things, IEEE Access 8 (2020)
55736–55749.

[5] S. Barbarossa, S. Sardellitti, P. Di Lorenzo, Communicating while computing:
distributed mobile cloud computing over 5g heterogeneous networks, IEEE Sig-
nal Process. Mag. 31 (2014) 45–55.

[6] R. Bellman, Dynamic programming, Science 153 (1966) 34–37.
[7] D.S. Bernstein, R. Givan, N. Immerman, S. Zilberstein, The complexity of de-

centralized control of Markov decision processes, Math. Oper. Res. 27 (2002)
819–840.

[8] T.D. Burd, R.W. Brodersen, Processor design for portable systems, J. VLSI Signal
Process. Syst. Signal Image Video Technol. 13 (1996) 203–221.

[9] N. Chen, S. Zhang, Z. Qian, J. Wu, S. Lu, When learning joins edge: real-time
proportional computation offloading via deep reinforcement learning, in: 2019
IEEE 25th International Conference on Parallel and Distributed Systems, IC-
PADS, IEEE, 2019, pp. 414–421.

[10] X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for
mobile-edge cloud computing, IEEE/ACM Trans. Netw. 24 (2015) 2795–2808.

[11] X. Chen, Y. Cai, Q. Shi, M. Zhao, B. Champagne, L. Hanzo, Efficient resource
allocation for relay-assisted computation offloading in mobile-edge computing,
IEEE Int. Things J. 7 (2019) 2452–2468.

[12] Y. Ding, C. Liu, X. Zhou, Z. Liu, Z. Tang, A code-oriented partitioning computa-
tion offloading strategy for multiple users and multiple mobile edge computing
servers, IEEE Trans. Ind. Inform. 16 (2019) 4800–4810.

[13] T.Q. Dinh, J. Tang, Q.D. La, T.Q. Quek, Offloading in mobile edge computing:
task allocation and computational frequency scaling, IEEE Trans. Commun. 65
(2017) 3571–3584.

[14] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things (iot): a vision,
architectural elements, and future directions, Future Gener. Comput. Syst. 29
(2013) 1645–1660.

[15] S. Hu, G. Li, Dynamic request scheduling optimization in mobile edge comput-
ing for iot applications, IEEE Int. Things J. 7 (2019) 1426–1437.

[16] L. Huang, S. Bi, Y.J.A. Zhang, Deep reinforcement learning for online compu-
tation offloading in wireless powered mobile-edge computing networks, IEEE
Trans. Mob. Comput. 19 (2019) 2581–2593.

[17] L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: a survey, J.
Artif. Intell. Res. 4 (1996) 237–285.

[18] M. Kamoun, W. Labidi, M. Sarkiss, Joint resource allocation and offloading
strategies in cloud enabled cellular networks, in: 2015 IEEE International Con-
ference on Communications, ICC, IEEE, 2015, pp. 5529–5534.

[19] Othman M. Khan, S.A. Madani, S.U. Khan, et al., A survey of mobile cloud com-
puting application models, IEEE Commun. Surv. Tutor. 16 (2013) 393–413.

[20] J. Kleinberg, E. Tardos, Algorithm Design, Pearson Education India, 2006.
[21] K. Kumar, J. Liu, Y.H. Lu, B. Bhargava, A survey of computation offloading for

mobile systems, Mob. Netw. Appl. 18 (2013) 129–140.
[22] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wier-

stra, Continuous control with deep reinforcement learning, in: 4th International
Conference on Learning Representations, ICLR, 2016, pp. 1–14.

[23] J. Liu, Y. Mao, J. Zhang, K.B. Letaief, Delay-optimal computation task scheduling
for mobile-edge computing systems, in: 2016 IEEE International Symposium on
Information Theory, ISIT, IEEE, 2016, pp. 1451–1455.

[24] P. Mach, Z. Becvar, Mobile edge computing: a survey on architecture and com-
putation offloading, IEEE Commun. Surv. Tutor. 19 (2017) 1628–1656.

[25] Y. Mao, J. Zhang, K.B. Letaief, Dynamic computation offloading for mobile-
edge computing with energy harvesting devices, IEEE J. Sel. Areas Commun.
34 (2016) 3590–3605.

[26] T.L. Marzetta, Noncooperative cellular wireless with unlimited numbers of base
station antennas, IEEE Trans. Wirel. Commun. 9 (2010) 3590–3600.

[27] X. Meng, W. Wang, Y. Wang, V.K. Lau, Z. Zhang, Closed-form delay-optimal
computation offloading in mobile edge computing systems, IEEE Trans. Wirel.
Commun. 18 (2019) 4653–4667.

[28] A.P. Miettinen, J.K. Nurminen, Energy efficiency of mobile clients in cloud com-
puting, in: 2nd USENIX Workshop on Hot Topics in Cloud Computing, in: Hot-
Cloud, vol. 10, 2010, pp. 1–7.

[29] L. Qian, Y. Wu, J. Ouyang, Z. Shi, B. Lin, W. Jia, Latency optimization for cellu-
lar assisted mobile edge computing via non-orthogonal multiple access, IEEE
Trans. Veh. Technol. 69 (2020) 5494–5507.

[30] B. Rountree, D.H. Ahn, B.R. De Supinski, D.K. Lowenthal, M. Schulz, Beyond dvfs:
a first look at performance under a hardware-enforced power bound, in: 2012

http://refhub.elsevier.com/S0743-7315(22)00197-6/bibE030C7A52A2572217FBDCDEE84C22527s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibE030C7A52A2572217FBDCDEE84C22527s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibE030C7A52A2572217FBDCDEE84C22527s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibD4ABD5F0EB3B89D06A88AD9E6C4CA504s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibD4ABD5F0EB3B89D06A88AD9E6C4CA504s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibD4ABD5F0EB3B89D06A88AD9E6C4CA504s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib8DD8DC8874882D950A795DB6936C7878s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib8DD8DC8874882D950A795DB6936C7878s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib8DD8DC8874882D950A795DB6936C7878s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibC4C6A891C8E775800F9E8B3B90878A09s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibC4C6A891C8E775800F9E8B3B90878A09s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibC4C6A891C8E775800F9E8B3B90878A09s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib0606A94E67636642B96B691FFE3F4177s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib0606A94E67636642B96B691FFE3F4177s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib0606A94E67636642B96B691FFE3F4177s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibFBD68DF5BB7C9CD964BFCB1D5660CBE0s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib8AD19812BE95EE5BABADE5384D56F308s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib8AD19812BE95EE5BABADE5384D56F308s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib8AD19812BE95EE5BABADE5384D56F308s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib45FEA8C2A8196057240A92E40068F50Cs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib45FEA8C2A8196057240A92E40068F50Cs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib14B7DF552253D1E6F31116FF028A8BC4s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib14B7DF552253D1E6F31116FF028A8BC4s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib14B7DF552253D1E6F31116FF028A8BC4s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib14B7DF552253D1E6F31116FF028A8BC4s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib350764D37B1E884A8055F271FB86A17Ds1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib350764D37B1E884A8055F271FB86A17Ds1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib3B3E7FA42F0B19B5EA54EF40D4DFFBD7s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib3B3E7FA42F0B19B5EA54EF40D4DFFBD7s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib3B3E7FA42F0B19B5EA54EF40D4DFFBD7s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibFEA1B582514975B32D25975EBDE0234Ds1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibFEA1B582514975B32D25975EBDE0234Ds1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibFEA1B582514975B32D25975EBDE0234Ds1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib7F8F6F323739213C61E416344A37E0CCs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib7F8F6F323739213C61E416344A37E0CCs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib7F8F6F323739213C61E416344A37E0CCs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibF6A891CCCD46DF33070F9C747A75B3F7s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibF6A891CCCD46DF33070F9C747A75B3F7s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibF6A891CCCD46DF33070F9C747A75B3F7s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib85766B9DE6020DBF9FA152E421171CDBs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib85766B9DE6020DBF9FA152E421171CDBs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib901B49AA9278110904F32E92ACD93ACCs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib901B49AA9278110904F32E92ACD93ACCs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib901B49AA9278110904F32E92ACD93ACCs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibFA8338B83CE7E1FEF54AA80740D33FC3s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibFA8338B83CE7E1FEF54AA80740D33FC3s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibB61F0E4CA23EFC55F3960DC94735E160s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibB61F0E4CA23EFC55F3960DC94735E160s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibB61F0E4CA23EFC55F3960DC94735E160s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib46A786C41E78671EB78FA9A92A1BFDD3s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib46A786C41E78671EB78FA9A92A1BFDD3s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib0222EA2B973B02C58AEB39139399E104s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib8555ECAF46AB5BF437135AAA302E7000s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib8555ECAF46AB5BF437135AAA302E7000s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib3412A032C352E65C0AB1AA5CF1F3C706s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib3412A032C352E65C0AB1AA5CF1F3C706s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib3412A032C352E65C0AB1AA5CF1F3C706s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib320499FC0BEC339BF58DA6EF24991DDBs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib320499FC0BEC339BF58DA6EF24991DDBs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib320499FC0BEC339BF58DA6EF24991DDBs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib6DA7C62073E6BF9A56BBB82BACA54FF4s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib6DA7C62073E6BF9A56BBB82BACA54FF4s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibB03F86016EE4D9C2091815DD342C6D54s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibB03F86016EE4D9C2091815DD342C6D54s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibB03F86016EE4D9C2091815DD342C6D54s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibA307668BEAD8F744F833FAC92AA4CE2Ds1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibA307668BEAD8F744F833FAC92AA4CE2Ds1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib0C131E92BE26AD291E2A592AA8C4B61Bs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib0C131E92BE26AD291E2A592AA8C4B61Bs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib0C131E92BE26AD291E2A592AA8C4B61Bs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib870AE18DC66F1D1D0558053455BFC39Bs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib870AE18DC66F1D1D0558053455BFC39Bs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib870AE18DC66F1D1D0558053455BFC39Bs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibB8ABDDBA116559765F10F4FD2EB080CEs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibB8ABDDBA116559765F10F4FD2EB080CEs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibB8ABDDBA116559765F10F4FD2EB080CEs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibB320DDE6EFB2AF80C0B91C801AD51148s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibB320DDE6EFB2AF80C0B91C801AD51148s1

L. Liao, Y. Lai, F. Yang et al. Journal of Parallel and Distributed Computing 171 (2023) 28–39
IEEE 26th International Parallel and Distributed Processing Symposium Work-
shops & PhD Forum, IEEE, 2012, pp. 947–953.

[31] T. Schaul, J. Quan, I. Antonoglou, D. Silver, Prioritized experience replay, in: 4th
International Conference on Learning Representations, ICLR, 2016, pp. 1–21.

[32] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller, Deterministic
policy gradient algorithms, in: International Conference on Machine Learning,
PMLR, 2014, pp. 387–395.

[33] F. Song, H. Xing, X. Wang, S. Luo, P. Dai, K. Li, Offloading dependent tasks
in multi-access edge computing: a multi-objective reinforcement learning ap-
proach, Future Gener. Comput. Syst. 128 (2022) 333–348.

[34] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double
q-learning, in: Proceedings of the AAAI Conference on Artificial Intelligence,
2016, pp. 2094–2100.

[35] F. Wang, J. Xu, S. Cui, Optimal energy allocation and task offloading policy for
wireless powered mobile edge computing systems, IEEE Trans. Wirel. Commun.
19 (2020) 2443–2459.

[36] S. Wang, S. Dey, Adaptive mobile cloud computing to enable rich mobile mul-
timedia applications, IEEE Trans. Multimed. 15 (2013) 870–883.

[37] M. Yao, L. Chen, T. Liu, J. Wu, Energy efficient cooperative edge computing with
multi-source multi-relay devices, in: 2019 IEEE 21st International Conference
on High Performance Computing and Communications; IEEE 17th International
Conference on Smart City; IEEE 5th International Conference on Data Science
and Systems, HPCC/SmartCity/DSS, IEEE, 2019, pp. 865–870.

[38] T. Zhang, Y. Xu, J. Loo, D. Yang, L. Xiao, Joint computation and communication
design for uav-assisted mobile edge computing in iot, IEEE Trans. Ind. Inform.
16 (2019) 5505–5516.

[39] Z. Zhou, J. Feng, Z. Chang, X. Shen, Energy-efficient edge computing service
provisioning for vehicular networks: a consensus admm approach, IEEE Trans.
Veh. Technol. 68 (2019) 5087–5099.

Linbo Liao received the B.S degree in Depart-
ment of Internet of Things Engineering from Nan-
chang Hangkong University in 2019, the master de-
gree from School of Informatics, Xiamen University in
2022. His research interests are edge and distributed
computing and machine learning.

Yongxuan Lai received the bachelor degree at
Management of Information System from Renmin
University of China in 2004, the Ph.D. degree in Com-
puter Science from Renmin University of China in
2009. He is currently a professor in Software Engi-
neering Department, School of Informatics, Xiamen
University, China. He is also the dean of School of
Mathematics and Information Engineering, Longyan
University, China. He was an visiting scholar during

Sep. 2017 - Sep. 2018 at University of Queensland, Australia. His research
interests include network data management, intelligent transportation sys-
tems, and big data management and analysis.

Fan Yang received his Ph.D. degree in Control The-
ory and Control Engineering from Xiamen University
in 2009. He is currently an associate professor in the
Department of Automation at Xiamen University. His
research interests include feature selection, ensemble
learning, and intelligent transportation systems.

Wenhua Zeng received his Ph.D. degree in Indus-
trial Automation from Zhejiang University in 1989. He
is currently a professor in the Department of Software
Engineering at Xiamen University. His research inter-
ests include embedded system, embedded software,
internet of things, and cloud computing.
39

http://refhub.elsevier.com/S0743-7315(22)00197-6/bibB320DDE6EFB2AF80C0B91C801AD51148s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibB320DDE6EFB2AF80C0B91C801AD51148s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib37E010EF46508C449EF3B3D634B62CA2s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib37E010EF46508C449EF3B3D634B62CA2s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib47DA88F593F06D1CC9DAE67B22F969CCs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib47DA88F593F06D1CC9DAE67B22F969CCs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib47DA88F593F06D1CC9DAE67B22F969CCs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibEE13A8A9C6B2FEC56EECB19E0018610Es1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibEE13A8A9C6B2FEC56EECB19E0018610Es1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibEE13A8A9C6B2FEC56EECB19E0018610Es1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib12D44FC18D38FD615BDD468A7A3A1F21s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib12D44FC18D38FD615BDD468A7A3A1F21s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib12D44FC18D38FD615BDD468A7A3A1F21s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibE82977EC655DCF62DA57B899FDABF2D5s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibE82977EC655DCF62DA57B899FDABF2D5s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibE82977EC655DCF62DA57B899FDABF2D5s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib527A1623D1819E661DD7548B67F3E3C7s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib527A1623D1819E661DD7548B67F3E3C7s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibA3F67C351422A77BBDBED5E512F8EE07s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibA3F67C351422A77BBDBED5E512F8EE07s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibA3F67C351422A77BBDBED5E512F8EE07s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibA3F67C351422A77BBDBED5E512F8EE07s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibA3F67C351422A77BBDBED5E512F8EE07s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib89656051E39C85EC6D15E07976DADFCEs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib89656051E39C85EC6D15E07976DADFCEs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bib89656051E39C85EC6D15E07976DADFCEs1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibA7F07354CDFD066892F9B7AA619A6150s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibA7F07354CDFD066892F9B7AA619A6150s1
http://refhub.elsevier.com/S0743-7315(22)00197-6/bibA7F07354CDFD066892F9B7AA619A6150s1

	Online computation offloading with double reinforcement learning algorithm in mobile edge computing
	1 Introduction
	2 Related work
	3 System model
	3.1 MEC system model
	3.2 Computation model
	3.2.1 Local execution model
	3.2.2 Task offloading model

	3.3 Tasks queue model

	4 Problem formulation
	4.1 Execution cost minimization problem
	4.2 Power scheduling problem
	4.2.1 State space
	4.2.2 Action space
	4.2.3 Reward function
	4.2.4 Transition

	4.3 Task offloading problem
	4.3.1 State space
	4.3.2 Action space
	4.3.3 Reward function
	4.3.4 Transition

	5 Reinforcement learning for computation offloading
	5.1 Basic idea of reinforcement learning
	5.2 The DDPG based power scheduling algorithm
	5.2.1 The architecture of DDPG
	5.2.2 Decision making
	5.2.3 Network training

	5.3 The double DQN based offload decision algorithm
	5.3.1 The architecture of double DQN
	5.3.2 Decision making
	5.3.3 Network training

	5.4 The adaptive prioritized experience replay algorithm
	5.5 The queue sorting algorithm

	6 Performance analysis
	6.1 Simulation setup
	6.2 Compared schemes
	6.3 Performance evaluation
	6.3.1 Overall performance
	6.3.2 Parameter tuning
	6.3.3 Impact factors

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

