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Smart mobile devices have recently emerged as a promising computing platform for computation tasks. 
However, the task performance is restricted by the computing power and battery capacity of mobile 
devices. Mobile edge computing, an extension of cloud computing, solves this problem well by providing 
computational support to mobile devices. In this paper, we discuss a mobile edge computing system 
with a server and multiple mobile devices that need to perform computation tasks with priorities. 
The limited resources of the mobile edge computing server and mobile device make it challenging to 
develop an offloading strategy to minimize both delay and energy consumption in the long term. To 
this end, an online algorithm is proposed, namely, the double reinforcement learning computation offloading
(DRLCO) algorithm, which jointly decides the offloading decision, the CPU frequency, and transmit power 
for computation offloading. Concretely, we first formulate the power scheduling problem for mobile 
users to minimize energy consumption. Inspired by reinforcement learning, we solve the problem by 
presenting a power scheduling algorithm based on the deep deterministic policy gradient (DDPG). Then, 
we model the task offloading problem to minimize the delay of tasks and propose a double Deep Q-
networks (DQN) based algorithm. In the decision-making process, we fully consider the influence of task 
queue information, channel state information, and task information. Moreover, we propose an adaptive 
prioritized experience replay algorithm to improve the model training efficiency. We conduct extensive 
simulations to verify the effectiveness of the scheme, and the simulation results show that compared 
with the conventional schemes, our method reduces the delay by 48% and the energy consumption by 
53%.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

With the development of wireless communication and the 
Internet of Things (IoT), smart mobile devices (MDs) have be-
come a new mobile computing platform on which applications 
such as video surveillance, face recognition, and natural lan-
guage processing are widely deployed [36,14]. These pose strict 
requirements on the computational power of MDs, especially 
for computation-intensive applications. The contradiction between 
resource-constrained MDs and computation-intensive applications 
becomes the bottleneck when providing satisfactory quality of ex-
perience (QoE) [19].
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As an effective method to solve the above-mentioned problem, 
recently various computation offloading schemes have been pro-
posed, which migrate the computation tasks to other devices or 
platforms for execution [5]. The cloud computing systems, for ex-
ample, would transfer all or part of the computation tasks to the 
cloud server to alleviate the heavy burden on the MDs. The main 
drawback of this cloud-based offloading approach is that it usually 
causes an unacceptable transmission delay as the cloud is usu-
ally far away from the clients. In contrast, mobile edge computing 
(MEC) deploys servers or micro-servers close to the MDs to reduce 
the transmission delay [24]. Therefore, MEC has become a promis-
ing computing paradigm for the various mobile applications [21].

There has been some research on the problem of computation 
offloading in MEC systems, most of which aim at enhancing the 
users’ QoE. Viewed as a convex optimization problem, the com-
putation offloading ratio, the processor clock rate, the bandwidth 
allocation, as well as the transmit power are taken into account 
for the optimization which minimizes the weighted sum of the 
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execution delay and the energy consumption for the computa-
tion offloading problem in [11]. To improve the delay performance, 
the general dependency among tasks is analyzed and a genetic 
algorithm-based solution was adopted in [2]. Recently, the compu-
tation offloading in UAV-assisted multi-user MEC scenarios is also 
discussed by [38].

In the previous works, however, all the tasks are assumed to be 
equally important, and they neglect the fact that the computation 
tasks are of different importance to users. For example, in MDs, 
security tasks (such as road detection, and vehicle detection) have 
the highest priority, followed by real-time tasks (such as games, 
AR / VR), and the lowest priority for non-real-time tasks (such as 
user behavior analysis task). Moreover, the queue waiting and ex-
ecution delay on the MEC servers should also be considered when 
solving the optimal offloading problem. A high-performance com-
putation offloading scheme that tails for the priority-based tasks 
and resource-constraint MEC servers is highly required.

The challenges of computation offloading in MEC systems lie in 
three folds: 1) The mobile network with edge servers is stochas-
tic and dynamic. The task execution is affected by multiple factors, 
such as the channel state information (CSI), and the task queue 
state information. So the cost and performance of computation 
tasks change with the states and the execution modes of MDs and 
edge servers; 2) The energy consumption of MDs is constrained 
by the battery capacity. Hence the transmit power and CPU fre-
quency of the MDs should be reasonably scheduled to save energy 
when offloading the computation tasks; 3) As the states evolve in 
a continuous space, one offloading decision will influence the lat-
ter one. Thus, the delay-energy tradeoff optimization problem is 
a long-term mixed-integer linear programming problem (LT-MILP), 
which has been proven to be NP-hard [20].

In this paper, we propose an efficient computation offloading 
scheme, called double reinforcement learning computation offload-
ing (DRLCO), in resource-constraint MEC systems. Our scheme in-
cludes two aspects of optimization objectives: 1) To minimize the 
weighted sum of the execution delay and the energy consumption 
of computation tasks in the long-term; 2) To improve the users’ 
QoE by reducing the delay of important tasks. Both the MDs and 
MEC servers are assumed resource-limited, and the MEC server can 
provide computational support for multi-MDs to handle tasks with 
priorities. Due to the stochastic and dynamic nature of the MEC 
system, we reformulate the computation offloading problem as a 
Markov Decision Process (MDP) problem and solve it by utilizing 
reinforcement learning techniques. The main contributions of this 
work are summarized as follows:

• We consider a scenario where both the MEC server and MDs 
are resource-constraint. And we develop a computation of-
floading model, including the offloading controller, the task 
execution queue on the MEC server and MD, and the task 
transmission queue between the MEC server and MD. Besides, 
different types of tasks have different execution priorities in 
the MEC system.

• In this paper, the optimization goal of computation offload-
ing is defined as reducing task execution delay and mobile 
device energy consumption, and then a double reinforcement 
learning computation offloading algorithm is proposed. Specifi-
cally, we decompose the computation offloading process into 
power scheduling process and task offloading process. In the 
process of power scheduling, we propose a Deep Deterministic 
Policy Gradient (DDPG) based approach to reduce the energy 
consumption of MDs by scheduling the transmit power and 
CPU frequency of the MDS. In the process of task offloading, 
we propose a double Deep Q Network (DQN) based approach 
to reduce the execution delay of tasks by making offloading 
decisions for computing tasks. And an adaptive prioritized ex-
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perience replay algorithm is proposed to improve the model 
training efficiency. Besides, the task queues are arranged and 
sorted according to their priorities to reduce the waiting delay 
and improve the users’ QoE.

• We conduct extensive experiments to evaluate the perfor-
mance of the proposed algorithms. The simulation results 
verify that our approach outperforms other state-of-the-art 
schemes. It reduces the delay by 48% and the energy consump-
tion by 53% compared with other schemes.

The rest of this paper is organized as follows. Section 2 dis-
cusses the related works. Section 3 presents the system model. 
Section 4 formulates the cost minimization problem and reformu-
lates it as an MDP problem. Section 5 presents the detailed Double 
DQN based approach and DDPG based approach, which obtains the 
optimal tasks offloading policy and schedules the transmit power 
and CPU frequency of the MDs. Section 6 evaluates the perfor-
mance of the proposed method based on extensive simulations. 
Finally, section 7 concludes the paper and gives some future direc-
tions.

2. Related work

Existing research on computation offloading in MEC systems 
can be roughly classified into three categories according to the op-
timization objectives, i.e., the delay-optimal computation offload-
ing, the energy-optimal computation offloading, and the energy-
delay tradeoff computation offloading.

For delay-sensitive applications, improving the delay perfor-
mance is the main objective of computation offloading. Liu et al. 
[23] proposed a one-dimensional search algorithm to minimize the 
total delay. Meng et al. [27] modeled the computation offload-
ing problem as an infinite level average cost MDP and derived a 
closed-form multi-level water-filling computation offloading pol-
icy to minimize the average delay in long term. Qian et al. [29]
aimed to reduce the transmission delay by improving the spec-
trum utilization with the non-orthogonal multiple access (NOMA) 
technology. Besides, Apostolopoulos et al. [4] proposed an offload-
ing strategy based on non-cooperative game theory to achieve 
delay-optimal in the multi-MDs scenario. Chen et al. [9] applied 
reinforcement learning technology to the process of computing un-
loading and proposed an Advanced DQN algorithm. The algorithm 
improves the original DQN by adding a priority buffer mechanism 
and an expert buffer mechanism.

For the energy-optimal computation offloading problem, Ka-
moun et al. [18] proposed an offloading strategy based on the con-
strained MDP to minimize the energy consumption under a delay 
constraint. Wang et al. [35] derived a convex optimization-based 
method by considering time-varying channels to reduce the en-
ergy consumption of transmissions. MDs have strict requirements 
for energy consumption, due to the limitation of battery capac-
ity. Hence the energy minimization problem in the scenario of 
multi-MDs is also investigated [39,37]. Zhou et al. [39] proposed 
a distributed solution based on the consensus alternating direction 
method of multipliers (ADMM), in which the energy minimization 
problem is decomposed into a bunch of subproblems distributed 
on MDs and solved in parallel. Yao et al. [37] proposed an opti-
mal total energy consumption algorithm (OTCA) based on bipartite 
matching to reduce the system energy consumption, and an opti-
mal energy consumption assignment algorithm (OECAA) to reduce 
the energy consumption of MDs. Huang et al. [16] proposed an 
edge computing offload model for wireless charging, in which the 
MDs use the energy obtained by wireless charging to perform 
computation tasks and computation offloading. And the author 
proposes a Deep Reinforcement learning-based Online Offloading 
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Fig. 1. The architecture of computation offloading model.
(DROO) framework, which uses the experience replay mechanism 
to learn binary offloading decisions.

Furthermore, some works [25,15,13,10,12] take the energy con-
sumption and delay into consideration at the same time and stride 
a tradeoff between them. Mao et al. [25] adopted a Lyapunov 
optimization-based offloading algorithm to minimize the total cost 
which consists of delay and energy consumption. To minimize both 
the delay and energy consumption, Dinh et al. [13] proposed a lin-
ear relaxation-based approach and a semidefinite relaxation (SDR)-
based approach to jointly optimize the offloading decision and the 
CPU frequency of MD. Chen et al. [10] solved the joint optimiza-
tion problem in the multi-MDs scenarios by non-cooperative game 
theory. In the same case, Ding et al. [12] proposed a decentralized 
computation offloading algorithm by jointly deciding the offload-
ing mode, CPU frequency, and transmit power. Alfakih et al. [3]
proposed a SARSA-based computation offload algorithm to mini-
mize energy consumption and computing delay. Song et al. [33]
defined the computation offloading process as a multi-objective 
Markov decision process, and proposed a multi-objective reinforce-
ment learning (MORL) algorithm based on DQN to reduce energy 
consumption and computation delay.

Most of the above-mentioned delay-energy optimal schemes 
do not consider the relationships between the types of tasks and 
users’ QoE. Different from existing research, in this paper we focus 
on the computation offloading of tasks with different priorities in 
the MEC systems. To minimize the delay and energy consumption, 
an algorithm based on reinforcement learning is proposed for the 
computation offloading.

3. System model

In this section, we first introduce the system model studied in 
this paper, and then elaborate on the computation model and the 
tasks queue model.

3.1. MEC system model

In [23,27,1], different MEC systems are proposed for different 
edge scenarios. In the paper, we consider computation offloading 
problems in a confined edge network/space (e.g. an enterprise, a 
campus, a home), and conduct a MEC system with one MEC server 
that can provide computational support for multi-MDs. As shown 
in Fig. 1, the MD can execute its computation tasks in two differ-
ent approaches: 1) executes locally at the MD, and 2) offloads the 
computation to the MEC server via wireless transmissions.

In our computation offloading model, the MD contains three 
parts: an offloading controller, a transmission queue, and a local 
execution queue. The offloading controller is in charge of mak-
ing the offloading decision for the computation task; the execution 
and transmission queues set the orders of tasks when executing 
30
Table 1
Main notations in this paper.

Notation Description

T the time slot set

m(b, s, c) computation task with priority b, data size s, and complexity c
I i
t offloading indicator of task i at time t
f t
l CPU frequency of the MD at time t

Dt,i
l local execution delay of task i at time t

Et,i
l execution energy consumption of task i at time t

rt transmission rate at time t
gt the channel gain between the MD and the MEC server at time t
pt

tx the transmit power of the MD at time t
Di

tx transmission delay of task i
Ei

tx transmission energy consumption of task i
f s CPU frequency of the MEC server

Di
s execution delay at MEC server of task i

qt
l ,qt

tx,qt
s state information of local queue, transmit queue, and server 

queue

Di
w waiting delay of task i

costi
t execution cost of task i at time t

S p , Ap, rp state space, action space, and reward function of the MDP model 
for power scheduling problem

So, Ao, ro state space, action space, and reward function of the MDP model 
for task offloading problem

μψ(sp) the policy function of actor model of power scheduling algorithm

Q θ (sp ,ap) the Q function of critic model of power scheduling algorithm

Q ξ (so,ao) the Q function of critic model of task offloading algorithm

W si the weight of sample i
Pi the sampling probability of sample i

or transmitting orders. And the MEC server executes the tasks re-
ceived from the MDs. Time is slotted with duration τ , and the time 
slot index set is T = {0, 1, ..., T }. For ease of reference, we list the 
key notations of our system model in Table 1.

3.2. Computation model

Without any loss of generality, the computation task is denoted 
as a tuple m(b, s, c), where b is the priority of the task, s (in bits) 
is the data size of the task, and c is the number of CPU cycles re-
quired to process one bit of task. The offloading indicator of the 
task is denoted by I ∈ {0, 1}, where I = 0 indicates the local exe-
cution approach and I = 1 stands for the offloading approach.

3.2.1. Local execution model
With the dynamic voltage frequency scaling (DVFS) techniques 

[30], MDs can dynamically adjust their CPU frequency based on 
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demands, which affects the delay and energy consumption of the 
task [25]. Specifically, the CPU frequency of the MD is denoted by 
f t
l , and the local execution delay of task i: mi(bi, si, ci) is denoted 

by:

Dt,i
l = wi

f t
l

, (1)

where wi = sici presents the number of CPU cycles required to 
execute the task, and f t

l is constrained by fmax , i.e., f t
l ≤ fmax, t ∈

T . The energy consumption of task executing at the MD is denoted 
by:

Et,i
l = k( f t

l )2 Dt,i
l , (2)

where k is the effective switched capacitance that depends on the 
chip architecture [8].

3.2.2. Task offloading model
The task offloading process is divided into two phases: the 

transmission phase and the execution phase.
In the transmission phase, the task is transmitted from the MD 

to the MEC server. According to the Shannon formula, the trans-
mission rate at time slot t is:

rt = Blog2(1 + pt
tx gt

N0
), (3)

where B is the bandwidth, N0 is the noise power at the receiver, 
and pt

tx is the antenna transmit power of the MD at time slot t 
which is constrained by pmax , i.e., pt

tx ≤ pmax, t ∈ T . Besides, the 
channel gain gt between the MD and the MEC server at the time 
slot t can be expressed as:

gt = G0(
d0

dt
)

γ

, (4)

where dt is the distance between the MD and the MEC server, 
which is changing as time goes by, d0 is the antenna far-field test 
distance of the base station to which the MEC server is connected, 
G0 is the channel gain constant, and γ is the path-loss exponent.

Similar to other works [23,25,27], the transmission delay of 
sending the results back to the MD from the MEC server is as-
sumed to be negligible. Therefore, the transmission delay of task i 
is related to the data size and uplink rate of each time slot. For 
simplicity, we assume the transmission rate is fixed during the 
transmission of the task. Thus, the transmission delay can be ex-
pressed as:

Di
tx = si

rt
. (5)

The energy consumption is given by

Ei
tx = pt

tx Di
tx. (6)

In the execution phase, the task is executed at the MEC server. 
Similar to other works, the CPU frequency of the MEC server f s is 
assumed to be fixed. Hence the execution delay is:

Di
s = wi

fs
. (7)

3.3. Tasks queue model

For resource-constrained MEC systems, the queue status infor-
mation (QSI) is a significant factor affecting the performance of 
offloading decisions. Let qt , qt

tx, qt
s represent the LQSI and TQSI at 
l
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the MD, and RQSI at the MEC server, respectively. Assume that the 
number of tasks generated in each time slot is random and obeys 
the i.i.d. χ(t) with E[χ ] = χ̄ , where χ̄ is the average generating 
rate of tasks. Thus, the number of computation tasks generated in 
each time slot can be expressed as χ(t)τ , τ is the duration of a 
time slot.

We also use different attributes to represent the state of differ-
ent queues, i.e., the state of the execution queue is represented by 
the workload of the tasks and that of the transmission queue is 
represented by the data size. Hence, the dynamics of the LQSI are 
given by:

qt+1
l = qt

l +
χ(t)τ∑
i=1

(1 − I)wi − f t
l τ . (8)

And the dynamics of the TQSI is given by:

qt+1
tx = qt

tx +
χ(t)τ∑
i=1

Isi − rtτ . (9)

The dynamics of the SQSI is given by:

qt+1
s = qt

s +
n∑

i=1

wi − f sτ , (10)

where n is the number of tasks received by the MEC server in time 
slot t .

The waiting delay of tasks in the queue is not negligible for 
the MEC systems. The waiting delay of task i can be calculated by 
summing the execution or transmission delay of previous tasks in 
the queue. In the local execution queue, the task waiting delay can 
be expressed as:

Di
w,l =

i−1∑
j=0

D j
l , (11)

where D j
l is the execution delay of task j at MDs. Similar to the 

local execution queue, the waiting delay of tasks in the transmis-
sion queue Di

w,tx and the server execution queue Di
w,s is obtained 

by summing the delays of previous tasks.
Therefore, the total execution delay of task i can be expressed 

as:

Di
tot =

{
Di

w,l + Dt,i
l , I = 0

Di
w,tx + Di

w,s + Dt,i
tx + Di

s. I = 1
(12)

Besides, the execution energy consumption of task i is defined 
as Et,i = Et,i

l when I = 0, and Et,i = Et,i
tx when I = 1.

4. Problem formulation

In this section, we first introduce the execution cost of a task 
and formulate the execution cost minimization (ECM) problem. 
Then, we define the power scheduling and task offloading prob-
lems based on the MDP model [7].

4.1. Execution cost minimization problem

Execution delay and energy consumption are two key factors 
for users’ QoE, which are adapted for optimizing the computation 
offloading policy in the MEC systems. Considering the priorities of 
tasks, the execution cost of task i can be expressed as:

costi
t = λbDi

tot + (1 − λ)Et,i (13)
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where λ ∈ [0, 1] is a parameter used to stride a tradeoff between 
the two objectives.

Our goal is to minimize the execution cost of tasks by jointly 
calculating the CPU frequency, transmission power, and task ex-
ecution mode. Given a time span of T , the ECM problem in the 
long-term can be formulated as:

min lim
T →+∞

1

T

T∑
t=0

1

χ(t)τ

χ(t)τ∑
i=0

costi
t

s.t. 0 ≤ pt
tx ≤ pmax, t ∈ T ,

0 ≤ f t
mobile ≤ fmax, t ∈ T ,

(14)

where costi
t , consists of task execution delay and energy consump-

tion of the MD, is the task execution cost defined at Eq. (13).
The ECM problem is a multi-objective optimization problem 

with coupled constraints, and the goal of the ECM problem is to 
minimize the execution cost by scheduling CPU frequency, trans-
mission power, and task offloading mode. We decouple the ECM 
problem by dividing the computation offloading process into two 
processes: 1) schedule the CPU frequency and transmission power 
at the beginning of each time slot to adjust the length of task 
queues; 2) In each time slot, the offloading decision is made for 
each computation task to reduce the execution cost of the task. 
Therefore, the computation offloading problem can be decomposed 
into power scheduling problem and task offloading problem. These 
problems are further reformulated as MDP problems that have ad-
vantages over sequential decision-making problems.

A typical MDP model is defined as a tuple 〈S, A, r, T 〉, which 
consists of a set of states S , a set of actions A, a reward function 
r, and a transition function T . In the following, we define the cor-
responding components for power scheduling and task offloading 
problems, respectively.

4.2. Power scheduling problem

At the beginning of each time slot of the offloading process, 
the MD needs to set the CPU frequency and transmission power to 
reduce the length of the task queues and the energy consumption.

4.2.1. State space
In this problem, we consider each state of state space contains 

two parts: the queue state information (QSI) and the channel state 
information (CSI). Specifically, we denote the state at the beginning 
of time slot t as a vector, i.e., st

p = (qt , gt) ∈ S p , in which qt =
(qt

l , q
t
tx, qt

s).

4.2.2. Action space
The MD needs to choose the CPU frequency and transmit power 

according to the current state st
p . And the action at time slot t can 

be denoted as at
p = ( f t

l , pt
tx) ∈ Ap , and the feasible action space is 

A = [0, fmax] × [0, pmax].

4.2.3. Reward function
After taking action at

p , the MD can obtain the reward from the 
environment. In the power scheduling process, to minimize both 
queues length and energy consumption, the reward rt

p is defined 
as:

rt
p = −(w1qt+1 + w2 Et), (15)

where Et is the total delay of the MD in time t , w1, w2 denote the 
weights of the two objectives in the combined reward function.
32
4.2.4. Transition
According to the equations (8), (9), and (10), the state transition 

probability is related to the mode of task execution and environ-
ment in time slot t .

According to the MDP model given above, the power scheduling 
problem can be reformulated as a problem of finding the optimal 
policy πp that maximizes the cumulative reward in the long-term. 
Specifically, the definition of the reformulated problem is given as:

max
πp

T∑
t=0

ζ t−1
p rt

p, (16)

where ζp ∈ [0, 1] is a discount factor that indicates the impact of 
long-term rewards on the current decision making.

4.3. Task offloading problem

For each computation task generated in any time slot, the mo-
bile device needs to select an appropriate execution mode for them 
to reduce the task execution cost.

4.3.1. State space
In the task offloading problem, the state refers to the envi-

ronment information when generating a task. Each state in the 
state space contains four kinds of information, including the CSI, 
the CPU frequency of the MD, the QSI, and the task information. 
Specifically, we denote the state as si

o = [qi, f i
l , g

i, mi(bi, si, ci)].

4.3.2. Action space
The action represents the mode of task execution, and can be 

expressed as ai
o ∈ {0, 1}, where ai

o = 0 indicates local execution and 
ai

o = 1 stands for computation offloading.

4.3.3. Reward function
To minimize the weighted sum of the execution delays and 

energy consumption, the reward function can be defined as ri
o =

−costi , where costi is defined at eq. (13).

4.3.4. Transition
Different from the power scheduling problem, the environment 

state changes after each task execution. Concretely, the CSI and 
tasks vary randomly according to Gaussian distribution and QSI 
varies according to equations (8), (9), and (10).

Hence, the task offloading problem can be reformulated as:

max
πo,πp

T∑
t=0

χ(t)τ∑
i=0

ζ i−1
o ri

o, (17)

where πo is the task offloading policy, and ζo ∈ [0, 1] is the dis-
count factor.

5. Reinforcement learning for computation offloading

This section presents a reinforcement learning-based approach 
for the computation offloading in the MEC system. We first briefly 
introduce and analyze existing reinforcement learning methods, 
then we describe the DDPG algorithm which solves the power 
scheduling problem [22], and the Double DQN algorithm that 
solves the task offloading problem in detail [34].

5.1. Basic idea of reinforcement learning

Reinforcement learning (RL) is an important branch of machine 
learning that can develop an online policy for smart agents to 
maximize expected cumulative rewards by interacting with the en-
vironment. The basic idea of RL is introduced in [17], and there are 
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Fig. 2. Architecture of the DDPG consists of actor model, critic model, and replay 
memory [22].

three major types of RL algorithms: 1) critic-model (value-based 
approach); 2) actor-model (policy-based approach); 3) actor-critic 
learning approach. The critic model-based RL algorithm makes de-
cisions by calculating and comparing the value of each action. 
The actor model-based RL algorithm learns a stochastic policy to 
choose the action, which is suitable for continuous action space. 
And the actor-critical approach utilizes value functions to conduct 
agents to make decisions in a continuous action space by combin-
ing the above two methods.

To reduce the length of task queues and energy consumption, 
we develop a power scheduling algorithm based on the Deep De-
terministic Policy Gradient to obtain CPU frequency and transmis-
sion power at the beginning of each time slot. Then, we present a 
Double DQN-based algorithm to make offloading decisions for the 
computation tasks generated in each time slot to reduce the task 
execution cost. We will introduce our RL algorithm from model ar-
chitecture, decision making, and network training.

5.2. The DDPG based power scheduling algorithm

5.2.1. The architecture of DDPG
DDPG is a reinforcement learning algorithm of an actor-critic 

model, which holds good performance in continuous action spaces. 
The architecture of DDPG is shown in Fig. 2, which consists of 
three modules: the actor model, the critic model, and the replay 
memory. In the actor model and the critic model, there are two 
neural networks, called evaluate network and target network, with 
the same structure (5 fully connected layers) but different param-
eters. We denote μψ(sp), μψ ′ (sp) as the policy function of two 
networks in actor model, and Q θ (sp, ap), Q θ ′ (sp, ap) as the Q-
function for critic model.

5.2.2. Decision making
The actor-evaluate network is responsible for interacting with 

the environment and outputting action at
p = μψ(st

p) according to 
the states. To avoid local optimum, Gaussian noise is added to the 
output of the actor-evaluate network. After taking the action at

p , 
the environment changes to the next state st+1

p and gives rewards 
rt

p according to equation (15). Besides, the interactive experience 
(st

p, at
p, rt

p, st+1
p ) is stored in the replay memory for training the 

model.

5.2.3. Network training
In each training episode, a batch of experiences is randomly 

sampled, which can reduce the correlation of experiences and ac-
celerate the network convergence [34]. We take one experience 
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(st
p, at

p, rt
p, st+1

p ) as an example to introduce the training procedure 
as follows.

To improve the performance of the policy function, the actor-
evaluate network is updated with the support of the critic-evaluate 
network. Concretely, st

p and at
p are input into critic-evaluate 

network to obtain the estimated action-value of at
p (denote as 

Q θ (st
p, at

p)). According to Silver et al. [32], the actor-evaluate net-
work can be updated by minimizing the loss function:

Lψ = E(μψ(st
p)Q θ (st

p,at
p)|at

p=μψ(st
p)). (18)

Then the critic-evaluate network is trained to obtain accurate 
estimated action-value. First, st+1

p is input into the actor-target net-

work and critic-target network to obtain Q-value of state st+1
p (de-

noted as Q θ ′ (st+1
p , at+1

p )), where at+1
p = μψ ′(st+1

p ). Then, according 
to the Bellman equation [6], the critic-evaluate network can be up-
dated by minimizing the loss function:

Lθ = E(rt
p + ζp Q θ ′(st+1

p ,at+1
p ) − Q θ (st

p,at
p))2. (19)

Moreover, the parameters of the target network are fixed while 
training evaluate network, which is helpful to the convergence 
of the evaluate network. We update the parameters of the target 
network by copying the parameters of the evaluate network. The 
detailed description of the network training of the DDPG-based 
power scheduling algorithm is given in Algorithm 1.

Algorithm 1 Network training of the DDPG based power schedul-
ing algorithm.
Input:

The LQSI ql , the TQSI qtx , the SQSI qs , and channel gain g .
Output:

The policy πp .
1: Initialize the networks of actor and critic model.
2: for e ← 0 to M A X_E P I S O D E do
3: Sample a batch of transitions from the replay memory according to Adaptive 

Prioritized Experience Replay Algorithm;
4: for t ← 0 to B AT C H_S I Z E do
5: Obtain experience (st

p, at
p , rt

p, st+1
p );

6: Given st
p , at

p , the critic-evaluate network outputs Q θ (st
p , at

p);
7: Update the actor-evaluate network according to Eq. (18);
8: Given st+1

p , the actor-target network outputs at+1
p ;

9: Given st+1
p , at+1

p , the critic-target network outputs Q θ ′ (st+1
p , at+1

p );
10: Update the critic-evaluate network according to Eq. (19);
11: if e >U P D AT E_E P I S O D E then
12: Copy the parameters of evaluate network to target network;
13: end if
14: end for
15: end for

5.3. The double DQN based offload decision algorithm

5.3.1. The architecture of double DQN
Double DQN is a critic model-based RL algorithm, which is suit-

able for discrete action prediction. The architecture of Double DQN 
is shown in Fig. 3, which consists of three modules, including 
evaluate network, target network, and replay memory. The eval-
uate network and the target network are neural networks with the 
same structure (5 fully connected layers) but different parameters. 
We denote Q ξ (so, ao), Q ξ ′ (so, ao) as Q-function for the two net-
works.

5.3.2. Decision making
In Double DQN, the evaluate network is in charge of decision 

making. When the computation task is generated, the state si
o is 

input into the evaluation network to obtain the offloading decision 
ai

o by
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Fig. 3. The architecture of Double DQN consists of evaluate network, target network, 
and replay memory [34].

ai
o = arg max

a
(Q ξ (si

o,a)). (20)

After taking action ai
o , the system changes to the next state 

si+1
o and gives rewards ri

o . Also, the replay memory model is con-
structed to store a series of historical experiences, i.e. (si

o, ai
o, ri

o,

si+1
o ).

5.3.3. Network training
Here we take one experience (si

o, ai
o, ri

o, si+1
o ) as an example to 

describe the training procedure. First, si
o and si+1

o are input into 
the evaluate network to obtain the estimated action-value of ai

o
(denote as Q θ (si

o, ai
o)) and the action ai+1

o with maximum Q-value 
under si+1

o state. The ai+1
o can be obtained by:

ai+1
o = arg max

a
(Q ξ (si+1

o ,a)). (21)

Then, we leverage the target network to obtain the Q-value of 
state si+1

o : Q ξ ′ (si+1
o , ai+1

o ). According to the Bellman equation [6], 
the parameters of evaluate network can be updated by minimizing 
the loss function:

Lξ = E(ri
o + ζo Q ξ ′(si+1

o ,ai+1
o ) − Q ξ (si

o,ai
o))

2. (22)

Similar to the DDPG algorithm, the parameters of the target 
network are fixed when training the evaluate network and updated 
by copying the parameters of the evaluate network. The detailed 
description of the network training of the Double DQN-based task 
offloading algorithm is given in Algorithm 2.

5.4. The adaptive prioritized experience replay algorithm

In the DDPG and double DQN algorithms, agents sample uni-
formly from the replay buffer which can not only meet the as-
sumption of the independent distribution of samples but also ac-
celerate convergence. However, uniform sampling ignores the dif-
ferences in importance between samples. To improve the model 
training efficiency, we propose an adaptive prioritized experience 
replay algorithm. Concretely, we first assign a weight to each ex-
perience and then calculate its sampling probability based on the 
weights.

We define the weight function W s to represent the importance 
of samples. Specifically, the weight function is mainly composed 
of two parts: the reward weight of samples W r and the sampling 
frequency F s.

The reward weight of samples W r can be denoted as follows:

W ri = |T Di | × Ri + α, (23)
34
Algorithm 2 Network training of the Double DQN based offload 
decision algorithm.
Input:

The LQSI ql , the TQSI qtx , the SQSI qs , the CPU frequency fl , the transmit rate r , 
and task information m(b, s, c).

Output:
Task offloading policy πo .

1: Initialize the evaluate networks and critic networks.
2: for e ← 0 to M A X_E P I S O D E do
3: Sample a batch of transitions from the replay memory according to Adaptive 

Prioritized Experience Replay Algorithm;
4: for t ← 0 to B AT C H_S I Z E do
5: Given si+1

o , the evaluate network outputs ai+1
o = arg maxa(Q ξ (si+1

o , a)));
6: Given si

o, ai
o , the evaluate network outputs Q ξ (si

o, ai
o);

7: Given si+1
o , ai+1

o , the target network outputs Q ξ ′ (si+1
o , ai+1

o );
8: Update the evaluate network according to Eq. (22);
9: if e >U P D AT E_E P I S O D E then

10: Copy the parameters of evaluate network to target network;
11: end if
12: end for
13: end for

where T Di denotes temporal difference error of sample i, which 
is represented by formula rt

p + ζp Q θ ′ (st+1
p , at+1

p ) − Q θ (st
p, at

p) in 
power scheduling algorithm and by formula rt

p + ζp Q θ ′ (st+1
p ,

at+1
p ) − Q θ (st

p, at
p) in offload decision algorithm. We set α to a 

small positive number to avoid sampling failure when TD error 
equals 0. To facilitate calculation, the rewards ri are normalized to 
[-1, 1], and the weight of reward R can be expressed as:

Ri = log(|ri | + 1) + 1. (24)

To prevent the weight of some samples from being too high, 
we add the sampling frequency to the weight function, which is 
denoted as:

F si = e−(numi)
x
, (25)

where numi represents the sampling times of samples i and x is a 
constant. Then, the weight function W s can be denoted as:

W si = W ri + κ F si, P (26)

where κ is a hyper-parameter used to stride a tradeoff between 
the two functions. Using the above weight function, we can calcu-
late the sampling probability of the sample by:

Pi = (W si)
β∑

i(W si)
β

(27)

where β ∈ {0, 1} is a random sampling factor. Concretely, the re-
play buffer adopts uniform sampling when β = 0 and priority sam-
pling when β = 1. In addition, to reduce the sampling complexity, 
a more effective update and sampling implementation, sum tree, 
is adopted in this algorithm [31]. The detailed description of the 
adaptive prioritized experience replay is given in Algorithm 3.

Algorithm 3 Adaptive prioritized experience replay algorithm.
Input:

Batch size of replay memory K .
Output:

K training samples.
1: Initialize the replay memory according to equations (26).
2: for i ← 0 to K do
3: Sample a transition from the replay memory according to equations (27)

based on sum tree;
4: Calculate TD error of transition;
5: Update sample weight equations (26);
6: end for



L. Liao, Y. Lai, F. Yang et al. Journal of Parallel and Distributed Computing 171 (2023) 28–39
Algorithm 4 The Double RL computation offloading policy.
1: Initialize parameters for DDPG and Double DQN.
2: while t ∈ T do
3: Observe state st

f from environment.

4: Chose CPU frequency and transmit power at
f according to DDPG.

5: while i ∈ χ(t)τ do
6: Observe state si

o from environment.
7: Make offloading decision ai

o according to Double DQN.
8: Sort task queue, execute task, and transmit task.
9: Obtain reward ri

o and transfer state into si+1
o .

10: Store (si
o, ai

o, ri
o, si+1

o ) for training Double DQN.
11: end while
12: Obtain reward rt

f and transfer state into st+1
f .

13: Store (st
f , at

f , rt
f , st+1

f ) for training DDPG.
14: if t >B AT C H_S I Z E then
15: Train DDPG model.
16: Train Double DQN model.
17: end if
18: end while

5.5. The queue sorting algorithm

Considering the difference in the importance of tasks, we de-
velop an algorithm to enhance the users’ QoE by sorting the exe-
cution order of tasks in the queues. The sorting algorithm utilizes 
four attributes of tasks, including the workload, data size, priority, 
and the waiting delay.

M = (
mij

)
n×4, where mij is the j-th attribute of the i-th task, 

denotes the attributes of the tasks. By normalizing each column, 
the matrix M is transformed into U = (

uij
)

n×4. Then, the weight 
matrix of the tasks can be expressed as:

W = U K T, (28)

where K is the weight coefficient vector of task attributes, and it 
has different values for different queues. Specifically, we prioritize 
the data size in the transmission queue and the workload in the 
execution queue.

Those algorithms above are combined to achieve the optimal 
delay-energy computation offloading for the considered MEC sys-
tem. The whole procedure of DRLCO is presented in Algorithm 4. 
In DRLCO, for any time slot t in the computation offloading pro-
cess, the MD obtains the state information st

p at the beginning of 
the time slot. Then st

p is input into Algorithm 1 to obtain the CPU 
frequency and server transmission power. For any task i generated 
in time slot t , the MD obtains the environment information si

o and 
sends the task to the execution queue or transmission queue ac-
cording to Algorithm 2. Then, the task queues are sorted by the 
queue sorting algorithm when a task enters the queue. Besides, the 
interaction experience between mobile and environment is stored 
for training DDPG and Double DQN models.

6. Performance analysis

In this section, we first introduce the simulation setup and 
the baselines. Then the performance of our computation offload-
ing policy is evaluated through extensive simulations. The schemes 
are implemented in Python 3.6 and experiments are run on a com-
puter with Intel Core i5 CPU, 2.9 GHz, NVIDIA GeForce GTX 1660 
GPU, 16 G RAM under Windows 10.

6.1. Simulation setup

The default simulation settings are set as follows unless oth-
erwise stated. The CPU frequency f s of the MEC server is set at 
50 GHz (2.5 GHz per core, 20 cores), and the average generating 
rate of tasks χ̄ is 5 tasks per second [27]. According to [28], the 
data size s of each task is set between 500 Kbits and 2 Mbits, and 
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Table 2
Training parameters for DRLCO.

Parameter Value

Number of MDs 35
Number of MEC server 1
Task generate rate of MDs 5 per time slot
Time slot duration 1 s
Length of time slot 10
Learning rate for actor of DDPG 0.005
Learning rate for critic of DDPG 0.001
Learning rate for Double DQN 0.01
Batch size for DDPG 64
Batch size for Double DQN 32
Discount factor ζp, ζo both 0.9

complexity c is between 500 and 2000 cycles per byte. Besides, 
the CPU frequency of MD is constrained by f max = 2 GHz and the 
maximum antenna transmit power Pmax

tx = 2 W. And the effective 
switched capacitance is set as k = 10−28 according to [25]. Fur-
thermore, we set the wireless channel model according to [26]. 
Concretely, the antenna far field test distance d0 = 1 m, the chan-
nel gain constant G0 = 10−3, path loss exponent γ ∈ (1.6, 3.5), the 
wireless bandwidth B = 10 MHz, and noise power N0 = 10−13 W. 
Besides, Table 2 describes the parameter settings for the training 
of DRLCO.

6.2. Compared schemes

To evaluate the performance of the proposed computation of-
floading policy, six baselines are introduced as follows:

• Local Execution: The mobile device executes all computation 
tasks locally with the maximum CPU frequency.

• Server Execution: The mobile device transmits all computation 
tasks to the MEC server with the maximum transmit power.

• Greedy Offloading: According to the execution delay and trans-
mission delay, the mobile device selects the execution mode 
with the least cost for each computing task.

• LODCO Algorithm [25]: Both the computation power and the 
computation offloading power are obtained by Lyapunov opti-
mization. And the offloading decision is obtained according to 
the greedy algorithm.

• TSO Algorithm [23]: Offloading decision is made according 
to offloading probability which is obtained by the one-
dimensional linear search.

• MORL Algorithm [33]: Offloading decision is made by multi-
objective reinforcement learning to reduce the execution delay 
and energy consumption.

6.3. Performance evaluation

6.3.1. Overall performance
Next, we evaluate the performance of six offloading methods in 

terms of delay, energy consumption, and execution cost.
Table 3 shows the overall performance of different approaches. 

Compared to other methods, Local Execution has the highest ex-
ecution delay (11.396 s) and the highest execution cost (11.701), 
which indicates that the MD cannot fully meet the computational 
requirements for performing computation tasks. In contrast, Server 
Execution offloads all tasks to the MEC server, which greatly re-
duces the delay (1.923 s) but incurs high energy consumption 
(0.995 × 10−3 J). This is because the transmission task consumes a 
large amount of energy, resulting in high execution costs (2.918). 
Besides, Greedy Execution has significant reduction in delay (about 
23% reduction) and energy consumption (about 31% reduction) 
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Table 3
Performance of the computation offloading schemes.

Schemes Delay (S) Energy (10−3 J) Total cost Decision delay (10−3 S) Training delay (10−3 S)

Local Execution 11.396 0.305 11.701 N/A N/A
Server Execution 1.923 0.995 2.918 N/A N/A
Greedy Offloading 1.668 0.680 2.348 0.516 N/A
LODCO 1.639 0.643 2.282 1.262 N/A
TSO 1.425 0.724 2.149 0.938 N/A
MORL 1.341 0.527 1.868 0.739 3.347
DRLCO 1.002 0.467 1.469 0.997 6.153
Fig. 4. Learning curve of three reinforcement learning methods.

compared with MEC Server Execution. LODCO reduces the time de-
lay to 1.639 s and the energy consumption to 0.643 × 10−3 J. TSO
performs well on the delay (13% decrease) while failing to con-
trol the energy consumption (12% increase) of the MD compared 
with LODCO. This is because TSO focuses on reducing task delay 
and ignores energy consumption. In addition, the MORL algorithm 
can effectively reduce delay (1.341 s) and energy consumption 
(0.527 × 10−3 J). However, MORL only focuses on the impact of 
task offloading mode on execution cost, while ignoring the impact 
of CPU frequency and transmission power of the MD. DRLCO has 
the lowest execution cost (1.469), which is about 87% and 50% 
reduction compared to Local Execution and Server Execution. And 
DRLCO achieves the lowest execution delay (1.002 s) compared 
with other baselines. It is because our task offloading algorithm 
can make dynamic decisions based on environmental information. 
Our method also obtains a good performance in energy consump-
tion (0.417 × 10−3 J) because our power scheduling algorithm can 
dynamically adjust the CPU frequency and transmit power of the 
MD.

To discuss the overhead of three reinforcement learning mod-
els, we record the decision delay of different algorithms. The delay 
of our algorithm to make a decision is 0.938 × 10−3 s, which is 
far below the task execution delay of 1.002 s. Besides, we com-
pared the training delay of DRLCO and MORL. The DRLCO train-
ing an episode takes 6.153 × 10−3 s and the MORL training takes 
3.427 × 10−3 s. This is because the MORL model has fewer param-
eters for decision-making.

Fig. 4 shows the learning curves of DRLCO, MORL and DRLCO 
without Adaptive Prioritized Experience Replay (DRLCO WOP). As 
shown in the figure, the DRLCO WOP has the slowest convergence 
speed (converge at episode 180), which shows that Algorithm 3
can accelerate the convergence of the model. In addition, the MORL 
starts to converge at episode 100, and the final reward is about -
130.

Fig. 5 depicts the average reduced delay of the tasks with differ-
ent priorities over six approaches compared to Local Execution. In 
this experiment, the execution delay of tasks with different priori-
36
Fig. 5. Execution delay vs. different task priorities.

ties is different, which is due to that the data size and complexity 
are random when generating tasks.

Therefore, we compared the delay reduction of different prior-
ities of tasks of each algorithm relative to Local Execution. We can 
find that the six baselines did little to reduce execution delays for 
high-priority tasks. In contrast, in our algorithm, the higher the 
task priority, the higher the delay reduction. Tasks with low to 
high priority are each reduced by 8.663 s, 8.937 s, 9.134 s, and 
9.298 s. This is because we developed a queue sorting algorithm 
and considered the priority of the task when making the offload-
ing decisions to reduce the delay of high-priority tasks.

6.3.2. Parameter tuning
We firstly study the effects of different parameters on the total 

reward for task execution. Concretely, we discuss different batch 
sizes, memory sizes, and learning rates for both power scheduling 
and task offloading algorithms. In Fig. 6(a), we plot the total re-
ward of task execution when the batch size of DDPG varies from 
32 to 128. It can be seen from the figure that the three curves 
converge at about 150 episodes, and the total rewards stabilized 
around -90 at the final. We find that the curve converges the 
fastest (about 110 episodes) when batch size = 32 but the lower 
total reward at final. It is because small batch size can store little 
experience, and the reward drops when a new state is sampled. 
Also, there is a fact that a larger batch size consumes more time 
for training. Thus, we set batch size = 64 for the power scheduling 
algorithm.

Then we present the simulation results in Fig. 6(b) with the size 
of replay memory ranging from 1000 to 10000. We find that the 
larger the memory size, the slower the convergence rate of our al-
gorithm, but the greater the total reward at the final since a large 
memory size can reduce the correlation of sampled data. However, 
the storage space occupied by replay memory is positively related 
to its size. Therefore, we set the memory size to 5000 for our al-
gorithm.

Fig. 6(c) and Fig. 6(d) plot the effects of different learning rates 
(range from 0.001 to 0.01) on the total reward for the actor and 
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Fig. 6. Impacts of different parameters of power scheduling algorithm on the total reward, including (a) batch size, (b) memory size, (c) learning rate of actor model, and (d) 
learning rate of critic model.

Fig. 7. Impacts of different parameters of task offloading algorithm on the total reward, including (a) batch size, (b) memory size, (c) learning rate.

Fig. 8. Performance of task execution with different (a) average generating rate of tasks, (b) frequencies of the MEC server, and (c) number of the MDs.
critic model. It can be seen from the two figures that the higher 
the learning rate, the faster the curve converges. In Fig. 6(c), we 
find that the model received the highest total reward (about -
80) when the learning rate of actor was 0.005. In Fig. 6(d), the 
curve (learning rate = 0.001) converges the slowest (converge at 
150 episodes), but obtains the highest total reward (about -75) at 
final. To maximize the total reward, the learning rates of the actor 
and critic models are set to 0.005 and 0.001.

We also tuned the parameters of the task offloading algorithm. 
Fig. 7(a) illustrates the effects of the batch size on the total reward. 
We find that the three curves fall into the local optimum between 
50 and 150 episodes, which may be due to the agent’s insufficient 
exploration of the environment. But the two curves (batch size = 
32 and 64) perform well after 150 episodes. Thus, we set the batch 
size to 32 considering the training time.

Fig. 7(b) depicts the convergence performance when the size of 
replay memory varies from 1000 to 10000. After 250 episodes, the 
MD received the highest total reward (about -75) when memory 
size = 5000, while the MD received the lowest total reward (about 
-90) when memory size = 1000. Thus, we set the memory size to 
1000 to reduce the storage space.

Finally, we present the simulation results in Fig. 7(c) with the 
learning rate ranging from 0.005 to 0.05. We can find that the 
37
curve (learning rate = 0.005) converges the slowest, while the 
curve (learning rate = 0.05) fluctuates the most, which is related 
to the nature of deep learning. Then, we set the learning rate to 
0.01.

Besides, we find that the parameter tuning of the task offload-
ing algorithm has a greater effect on the convergence rate than 
that of the power scheduling algorithm when comparing Fig. 6 and 
Fig. 7. This is mainly because the task offloading algorithm has a 
direct impact on the execution mode of the task.

6.3.3. Impact factors
We also vary several critical factors, i.e., the average generating 

rate of tasks χ̄ , the CPU frequency of the MEC server f s , and the 
number of the MDs to study their impact on the DRLCO.

Fig. 8(a) illustrates the impact of the average generating rate 
of tasks χ̄ of the MD, which varies from 5 to 10 per second. We 
find that the execution cost of the tasks increases gradually as χ̄
increases. Compared with Server Execution, DRLCO reduces the ex-
ecution cost by half. This performance can be attributed to two 
features of our algorithm: 1) maintain the load balance between 
the MEC server and the MD; 2) maintain a balance between power 
consumption and delay.
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Fig. 8(b) depicts the impact of the CPU frequency of the MEC 
server f s on the execution cost. We can find that the higher the 
CPU frequency of the server, the lower the execution cost of the 
task. When f s = 50 GHz (2.5 GHz per core, 20 cores), the execution 
costs of our algorithm are reduced by 15%, 32%, 35%, 41%, 48% and 
87% than other six baselines.

Fig. 8(c) depicts the impact of the number of MDs on the exe-
cution cost. We can find that the higher the number of MDs, the 
higher the execution delay of the task due to the number of tasks 
increased. When there are 20 MDs, the execution cost of our al-
gorithm is reduced by 21%, 30%, 34%, 39%, 55%, and 90% than the 
other six baselines.

7. Conclusion

In this article, we model a computation offloading framework 
for the resource-constrained MEC system. Then, we take task ex-
ecution delay and energy consumption as optimization objectives 
which are key factors to measure the QoE of mobile users. To min-
imize both the execution delay and energy consumption, we pro-
pose a double reinforcement learning computing offloading algo-
rithm that can jointly schedule CPU frequency, transmission power, 
and task offloading mode. As compared with other benchmark 
schemes, simulation results have demonstrated that the proposed 
algorithm can effectively reduce the execution delay of the tasks 
and the energy consumption of the MD.

For future work, we are going to investigate the computation 
offloading problem in the MEC scenario with multiple MEC servers 
and multi-MDs. We will consider the problem of resource schedul-
ing and the cooperation between the MDs in this scenario.
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