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Based on the conventional attentional encoder-decoder framework, multi-modal neural
machine translation (NMT) further incorporates spatial visual features through a separate
visual attention mechanism. In this aspect, most current multi-modal NMT models first
separately learn the semantic representations of text and image and then independently
produce two modalities of context vectors for word predictions, neglecting their semantic
interactions. In this paper, we argue that learning text-image semantic interactions is more
reasonable in the sense of jointly modeling two modalities for multi-modal NMT and pro-
pose a novel multi-modal NMT model with deep semantic interactions. Specifically, our
model extends the conventional multi-modal NMT by introducing the following two atten-
tion neural networks: (1) a bi-directional attention network for modeling text and image
representations, where the semantic representations of text are learned by referring to
the image representations, and vice versa; (2) a co-attention network for refining text
and image context vectors, which first summarizes the text into a context vector, then
attends it to the image for obtaining the text-aware visual context vector. The final context
vector is calculated by re-attending the visual context vector to the text. Results on the
Multi30k dataset for different language pairs show that our model significantly improves
on the state-of-the-art baselines. We have released our code at https://github.com/
DeepLearnXMU/MNMT.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

As an extension of the conventional text-based machine translation, multi-modal NMT exploits both visual and textual
semantic information for translation. The studies of multi-modal machine translation have the following significances: First,
to promote the integration of computer vision into natural language processing; Second, to push multi-modal language pro-
cessing towards multi-lingual multi-modal language processing; Third, to investigate the effectiveness of image information
on machine translation. Hence, multi-modal NMT has attracted extensive attention from the industry and become a research
hotspot in academia as well [37,18,4].
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In this aspect, many models have been proposed to incorporate visual semantic information into NMT. For instance, Cal-
ixto et al. [8] proposed a doubly-attentive decoder which naturally incorporates spatial visual features via an independent
attention mechanism. Moreover, Calixto et al. [9] investigated the effectiveness of incorporating visual features into different
components of multi-modal NMT model. Additionally, Delbrouck and Dupont [15] employed Compact Bilinear Pooling to
combine the attention features of the two modalities by computing the outer product of their corresponding context vectors.
Besides, Delbrouck and Dupont [14] compared several attention mechanisms on the basis of the existing multi-modal NMT
model, surpassing the state-of-the-art scores on the Multi30k data set. However, among the aforementioned works, there are
two drawbacks:

(1) In terms of learning semantic representations, the previous models only utilized text information to refine the visual
semantic representations, ignoring the strong semantic association between text and image. Intuitively, it is more reason-
able to generate better representations via the semantic interactions between text and image representations.
(2) With respect to the generation of context vectors, the above-mentioned models adopted two separate attention mech-
anisms to generate text and image contexts, respectively. However, the semantic interactions between text and image
contexts are apparently under-utilized in these models, although intuitively beneficial for multi-modal NMT.

It should be noted that designing an effective mechanism capturing multi-modal semantic interactions can significantly
refine the representation learned in distinct modalities, which has been demonstrated effective in many tasks, such as VQA
[32,44,22,42,31,41,52], NER [51], QA [43] etc. Therefore, we believe that exploiting multi-modal semantic interactions has
potential to further improve multi-modal NMT.

In this paper, we propose a novel multi-modal NMT model with semantic interactions between text and image. Our pro-
posed model is based on the conventional multi-modal NMT and enhanced by introducing the following two additional
attention mechanisms:

(1) A bi-directional attention network for representation modeling, which learns enhanced text and image representa-
tions via modeling semantic interactions between them. Concretely, we introduce an attention matrix to capture fine-
grained semantic alignments between text and image to generate improved representations, which incorporates more
interaction information between modalities.
(2) A co-attention mechanism for context vector modeling, which summarizes multi-modal representations in a way that
exploits the complementarity and redundancy between modalities. More specifically, the co-attention mechanism is
implemented in the following manner: It first derives a context vector merely from previously generated text represen-
tations. Then, this context vector is used to guide the generation of image context vector. Finally, the image context vector
is exploited in the subsequent re-attention process to obtain the updated text context vector that encodes more interac-
tion information.

To summarize, the contributions of our work are as follows: (1) From the perspective of modeling, we investigate how to
exploit semantic interactions between text and image to improve multi-modal NMT. (2) We propose a bi-directional atten-
tion network to obtain visual-aware text representations and text-aware image representations by modeling alignments
between text and image. Meanwhile, we introduce a co-attention mechanism to refine the generation of context vectors
for multi-modal NMT via jointly performing text-guided visual attention and image-guided text attention. (3) Experimental
results and in-depth analyses on public datasets show that our model achieves significant improvements over the conven-
tional multi-modal NMT models. (4) We release our code at https://github.com/DeepLearnXMU/MNMT.
2. Related work

Recently, multimodal deep learning has attracted increasing attention due to its wide applications, such as image clus-
tering Li and Lu [29], disease detection Li et al. [28], image segmentation Fang et al. [21], and cross-modal retrieval Li
et al. [27]. Particularly, as a significant extension of the conventional text-only NMT, multi-modal NMT has also become a
hot research topic in the community of machine translation, and has been listed as a new shard WMT task at the intersection
of natural language processing and computer vision [37,18,4]. Currently, the dominant models can be classified into the fol-
lowing categories:

As for the first kind, only textual attention mechanism is employed, where image information plays a complementary role
in refining text representations. For example, Huang et al. [25] extended the traditional attentional NMT framework via inte-
grating the semantic representation of image as an additional input into encoder. Calixto et al. [9] further explored how to
initialize the decoder hidden states with the semantic representation of image. In a multitask learning framework, Elliott and
Kádár [20] decomposed multimodal translation into learning a translation model and visually grounded representations. In
this way, the multi-modal model can be trained over external datasets of parallel text or described images, making it possible
to take advantage of existing resources. Qian et al. (2018) [34] put forward a novel algorithm on the basis of the Advantage
Actor-Critic algorithm [2] to investigate the effectiveness of reinforcement learning in multi-modal NMT.
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Unlike the first kind, approaches of the second category hold that both text and image information are vital in multi-
modal NMT. Therefore, two attention mechanisms are simultaneously used to capture text and image contexts for transla-
tion, respectively. In this aspect, Caglayan et al. [6,7] first proposed an end-to-end attentional multi-modal NMTmodel effec-
tively incorporating two attention mechanisms that share the same parameters for text and image. Furthermore, Calixto
et al. [8] investigated the effectiveness of applying two independent attention mechanisms respectively on incorporating
text and image information. Delbrouck et al. [16] made an empirical investigation on improving multi-modal NMT by using
enhanced visual and word representations. Among these work, however, the text and image were assumed to be mutually
independent. To utilize semantic interactions to refine the learned image semantics, Delbrouck and Dupont [15] applied a
multi-modal Compact Bilinear Pooling operation to remove the noisy information of image representations according to
the text representations. Recently, Yin et al. [46] proposed a graph-based multi-modal fusion encoder for NMT, which is
based on a unified graph representing various semantic relationships between multi-modal semantic units. Lin et al. [30]
introduced capsule network to better dynamically extract image features for translation. Yang et al. [45] jointly trained
the source-to-target and target-to-source translation models, which are encouraged to share the same focus on the visual
information when generating semantically equivalent visual words.

In this work, we mainly explore image-text semantic interactions for multi-modal NMT, which have been proven effec-
tive in many tasks, such as VQA [32,44,22,42,31,41,52], NER [51], QA [43] etc. Overall, our work differs from the above-
mentioned works in the following two aspects:

First, our work is the first one to introduce image-text mutual interactions to refine their semantic representations, which
is significantly different from previous works that only focus on image-to-text one-way operation.

Second, we explore not only the semantic interactions between text and image representations but also that of their con-
text vectors, which is also very crucial for multi-modal NMT. More precisely, the context vector, generated from text repre-
sentations, is attended to the image representations to build a second layer of context vector, which is used to implement
attention on the text representations again.
3. Background

In this section, we give a detailed description of the multi-modal NMT model [8], which is an extension of the attention-
based NMT [3] with the addition of a separate visual attention mechanism to incorporate image features, as shown in Fig. 1.
Given an image I, a source sentence X ¼ x1; x2; � � � ; xNð Þ that describes the image and its corresponding translation
Y ¼ y1; y2; � � � ; yMð Þ, the multi-modal NMT aims to construct an end-to-end neural network to model P ¼ Y jX; Ið Þ. Formally,
the multi-modal NMTmodel is composed of one text encoder, one visual encoder and one decoder with two attention mech-
anisms. The text encoder and visual encoder learn a text representation C and a visual representation A for the source sen-
tence and image, respectively, and then the doubly-attentive decoder sequentially generates target words by decomposing
the following conditional probability:
1 http
logp YjX; Ið Þ ¼
XM
i¼1

logp yt jy<t; C;Að Þ: ð1Þ
As for the specific implementation of encoder, a bi-directional Recurrent Neural Network (RNN) with Gated Recurrent

Unit (GRU) [11] is constructed, where a forward RNN U
!

enc reads the source sentence word by word, from left to right,

and produces a sequence of forward hidden states h
 

1; h
 

2; � � � ; h
 

N

� �
. Similarly, a backward RNN U

 
enc scans the source sen-

tence reversely and generates a sequence of backward hidden states h
 

1; h
 

2; � � � ; h
 
N

� �
, as shown in Eq. (2) and Eq. (3):
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where U
!

enc and U
 

enc are the GRU activation functions in two directions, Ex xi½ � denotes the embedding of source word xi. The

final hidden state at a given timestep is the concatenation of forward and backward hidden states hi ¼ h
!
i; h
 

i

� �
. By doing so,

we can use the set of hidden states C ¼ h1;h2; � � � ;hNð Þ to represent the input sentence. The visual encoder is a pre-trained
convolutional neural network (CNN), of which parameters are fixed during training. Specifically, we employ a 50-layer Resid-
ual Network (ResNet-50) [23] to represent the visual semantic information as a matrix A ¼ a1; a2; . . . ; a196ð , where ai 2 R1024Þ
and each row is composed of a 1024D feature vector encoding the information of a specific image region. The decoder is a
conditional GRU1 (cGRU) with two separate attention mechanisms: one is text attention mechanism and the other is visual
s://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf
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Fig. 1. Conventional multi-modal NMT model.
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attention mechanism. In details, the cGRU consists of two stacked GRU activations called REC1 and REC2. To generate the target
word yt at the time step t, REC1 firstly computes a hidden state proposal s0t given the previous hidden state st�1 and the previ-
ously generated target word yt�1 as follows:
s0t ¼ 1� z0t
� �� s0t þ z0t � st�1; ð4Þ

s0t ¼ tanh W 0Ey yt�1½ � þ r0t � U0st�1
� �� �

; ð5Þ
r0t ¼ r W 0

rEy yt�1½ � þ U0rst�1
� �

; ð6Þ
z0t ¼ r W 0

zEy yt�1½ � þ U0zst�1
� �

; ð7Þ

where Ey yi½ � is the embedding vector of the target word yi. In this process, the text attention generates a time-dependent
context vector ct based on the hidden state proposal s0t and a sequence of hidden states C in the following way:
ct ¼ f att text C; s0t
� �

: ð8Þ

Meanwhile, the visual attention computes a time-dependent context vector it based on the hidden state proposal s0t and

the visual feature maps A as follows:
it ¼ f att img A; s0t
� �

: ð9Þ

Then, the secondGRUactivationREC2 generates a newhidden state st using the temporary hidden state proposal s0t ; ct and it:
st ¼ 1� ztð Þ � st þ zt � s0t ; ð10Þ
st ¼ tanh Wct þWit þ rt � Us0t

� �
;

� ð11Þ
rt ¼ r Wrct þWrit þ Urs0t

� �
; ð12Þ

zt ¼ r Wzct þWzit þ Uzs0t
� �

: ð13Þ
Finally, the probabilities for the next target word are calculated on the basis of the previous hidden state st , the previously
decoded symbol yt�1; ct and it:
p ytjy<t ;C;Að Þ / exp Lo tanh Lsst þ LwEy yt�1½ � þ Lcsct þ Lciit
� �� �

; ð14Þ

where Lo; Ls; Lw; Lcs; Lci are the related model parameters.

4. The proposed model

As shown in Fig. 2, our model is an extension of the conventional multi-modal NMT model, which is equipped with a bi-
directional attention network and a co-attention network to model underlying semantic interactions between text and
image.
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Fig. 2. The architecture illustration of our model.
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4.1. Encoder with bi-directional attention network

As illustrated in the lower part of Fig. 2, we propose a bi-directional attention network to enhance text and image rep-
resentations by capturing their semantic interactions. To do this, we first implement attentions in two directions: from text
to image as well as from image to text, where a shared alignment matrix S 2 RN�L between the text hidden states
C ¼ h1;h2; . . . ;hNð Þ and the image feature maps A ¼ a1; a2; � � � ; aLð Þ are derived for bi-directional attentions. In this way, each
source word is able to semantically interact with all image regions and vice versa. Formally, the alignment matrix is com-
puted as follows: 2
2 In f
apply a
importa
weight
attentio
effectiv
Si;l ¼ g hi � alð Þ; ð15Þ
where g �ð Þ is a scalar function and Si;l 2 R measures how well the i-th row vector in C semantically matches the l-th row
vector in A.
act, there are many ways can be used to model the bi-directional attention network. In this work, we follow common practices [48,13,43] to directly
scalar function to calculate the shared similarity matrix S. Please note that the dimension of S is N � L, and thus it is not a symmetric matrix. More
ntly, although S is shared between text-visual and visual-text representations, it can induce two different text-to-visual and visual-to-text attention
matrices, which are normalized by rows and columns, respectively (See Eqs. (16) and (18)). In this way, we not only obtain text-visual and visual-text
n weight matrices quickly, but also avoid the over-fitting caused by additional matrix parameters. Our experimental results demonstrate the
eness of our such approach for text-visual and visual-text similarity calculation.
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Text-to-visual Attention. It signifies which image regions are most relevant to each source word. We use the vector
wt2v

i 2 RL to denote attention weights on the image regions, where
P

wt2v
il ¼ 1 for all i and wt2v

i is computed in the following
way:
wt2v
i ¼ softmax Si:ð Þ: ð16Þ
Subsequently, each attended text vector �hi is calculated as
�hi ¼ hi þ
X
l

wt2v
il al: ð17Þ
Thus, we can obtain a matrix H ¼ �h1;
�h2; . . . ; �hN

�
) containing the vectors for the whole source sentence. .

Visual-to-text Attention. This attention denotes which source words semantically match each visual region mostly. Let
wv2t

l 2 RN represents the attention weight of the l-th visual region acting on the source words, where
P

wv2t
li ¼ 1 for all l and

we obtain wv2t
l by
wv2t
l ¼ softmax S:lð Þ: ð18Þ
Thus, every attended visual vector �al is induced as follows:
�al ¼ al þ
X
i

wv2t
li hi; ð19Þ
constituting a matrix A ¼ �a1; �a2; . . . ; �aLð Þ that includes the attended text vectors for all visual regions.

4.2. Decoder with co-attention mechanism

The upper half of Fig. 2 shows the architecture of decoder with co-attention network. Different from doubly-attentive
decoder described in Section 3, which learns to attend to visual feature maps and source sentence separately, our decoder
is enhanced by a co-attention mechanism implemented in the following three phases: (1) It first generates a text context
vector ct by attending to the text hidden states; (2) It applies ct to attend to image feature maps for producing a text-
aware visual context vector it; (3) It forms the final context vector through attending to text hidden states on the basis of
previously derived context vector ct and it .

Specifically, we employ a single-layer feed-forward network to compute an expected alignment et;i between text hidden
state �hi and target word yt:
et;i ¼ vað ÞT tanh Uas0t þWa
�hi

� �
; ð20Þ
where et;i quantifies the importance of the i-th source word in generating yt , and va;Ua andWa are the related model param-
eters. We then normalize the alignment scores and define the text context vector ct as the weighted sum over text hidden
states:
at;i ¼
exp et;i

� �
XN
i0¼1

exp et;i0
� � ; ð21Þ

ct ¼
XN
i¼1

at;i
�hi; ð22Þ
where at;i is the normalized alignment weight.

At the second phase, we obtain the time-dependent visual context vector it based on the visual feature maps A, the con-
text vector ct and the hidden state proposal s0t in the following way:
it ¼
XL

l¼1
aimg
t;l

�al; ð23Þ

aimg
t;l ¼

exp eimg
t;l

� 	
XL

l0¼1
exp eimg

t;l0

� 	 ; ð24Þ

eimg
t;l ¼ v img

a

� �T
tanh Uimg

a s0t þ Vimg
a

�al þWimg
a ct

� 	
; ð25Þ
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where eimg
t;l evaluates how much attention should be put on the l-th visual region at the t-th time step, aimg

t;l is the normalized

attention weight, and v img
a ;Uimg

a ;Vimg
a and Wimg

a are the related model parameters. Note that unlike conventional multi-modal
NMT, we take the text context vector ct as an additional input when computing the visual context vector it .

Next, in a similar way, we use both ct and it as additional inputs to re-attend to text hidden states, resulting in another
text context vector �ct:
3 http
4 http
5 http
�ct ¼
XN
i¼1

�at;i
�hi; ð26Þ

�at;i ¼
exp �et;i

� �
XN
i0¼1

exp �et;i0
� � ; ð27Þ

�et;i ¼ �vað ÞT tanh Uas0t þ Va
�hi þWact þ Qait

� �
; ð28Þ
where �et;i is an unnormalized attention weight, �at;i is the normalized weight, and �va;Ua;Va;Wa and Qa are the related
parameters.

Finally, our decoder employs a modified version of REC2 to generate the final hidden state on the basis of the hidden state
proposal s0t and all previously derived context vectors ct ; it and �ct:
st ¼ 1� ztð Þ � �st þ zt � s0t ; ð29Þ
�st ¼ tanh Wct þWit þW�ct þ rt � Us0t

� �� �
; ð30Þ

rt ¼ r Wrct þWrit þWr�ct þ Urs0t
� �

; ð31Þ
zt ¼ r Wzct þWzit þWz�ct þ Uzs0t

� �
: ð32Þ
We then calculate the probability distribution of the next target word as follows:
p ytjy<t ;C;Að Þ / exp Lo tanh LsstEy yt�1½ � þ Lcsct þ Lciit þ Lc�s�ct
� �� �

; ð33Þ

where Lc�s is a new vector parameter for �ct .

5. Experiment

5.1. Datasets

To investigate the effectiveness of the proposed model, we carried out two groups of experiments on the translated and
the comparable Multi30k dataset 3 [19] respectively. We referred to these two datasets as M30KT and M30KC, both of which are
expansions of the Flick30K [47] and have been widely used in the community of multi-modal NMT. Each instance in M30KT is a
triple consisting of an image, an English description and a German description manually translated by a professional translator.
As for M30KC, it consists of a set of triples and each of them includes an image, five descriptions in English and five descriptions
in German collected independently. In two groups of experiments, training, validation and test sets contain 29 K, 1,014 and 1 K
triples, respectively.

The entire training set in M30kT was used for training while its validation set served for model selection based on BLEU
score [33]. After that, we used M30KT test set to evaluate the models. Following Calixto et al. [8], we trained the DL4NMT [3]
on the M30KT dataset without images to build a back-translation model. Then, we employed the model to back-translate all
English(German) descriptions in M30KC into German(English). Finally, we used the triples (synthetic English description,
German description, image) to pre-train the model when translating English into German, and the triples (synthetic German
description, English description, image) when translating German into English.

We utilized theMOSES scripts4 to normalize, tokenize and lowercase both English and German descriptions. Then, following
Calixto et al. [8], we preprocessed our data by converting words to subword tokens using a bilingual Byte Pair Encoding (BPE)
[35] model with 10 K merge operations. In this way, the English and German vocabularies consist of a total of 5,201 and 7,066
subwords respectively.

5.2. Setup

We implemented our proposed model and its variants on the top of MNMTSRC+IMG [8] 5, which was developed based on
OpenNMT [26]. The encoder is a bi-directional RNN with GRU (one 256D single-layer forward RNN and one 256D single-
layer backward RNN). We set both embedding sizes of source and target words to 128 and randomly initialized the word
s://github.com/multi30k/dataset
://www.statmt.org/moses/
s://github.com/iacercalixto/MultimodalNMT
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embeddings and other related model parameters according to a uniform distribution (min ¼ �0:1 and max ¼ 0:1). We used a
modified cGRU as our decoder, which is a neural language model [5] conditioned on the previously generated target word,
the previous hidden state, the source sentence and the image via a co-attention mechanism. To accurately represent the visual
semantic information, we extracted visual features from the res4f layer of pre-trained ResNet-50 [23] and transformed them
from 1024D to 256D to make them consistent with the text. Please note that the visual features are fixed during training.
Besides, we also adopted dropout strategy [38] with rate 0.3 to further enhance our models.

As implemented in [7], we used Adam optimizer with mini-batches size of 32 to train all models. Particularly, we applied
early stopping to determine the optimal model parameters based on the system performance on the validation set, where the
training procedure was stopped if the system performance remains unchanged for more than 20 epochs.

For the evaluation of the generated translations, we adopted three commonly used metrics: BLEU4 [33], METEOR [17] and
TER [36]. All these metrics were computed using scripts in MultEval [12].

Baseline models. To empirically verify the merit of our proposed model, we referred to our model as MNMT and com-
pared it with the following state-of-the-art methods, namely:

� Parallel RCNNs [25]: It employs an encoder consisting of multiple encoding threads where all the long short-termmemory
[24] parameters are shared. In each thread, a regional visual feature is followed by the text sequence.
� MNMTSRC+IMG [8]: It uses a doubly-attentive decoder to exploit visual feature maps and text hidden states independently
when generating translations. Please note that we developed our proposed model based on its released code.
� IMGD [9]: This model utilizes image features as additional input to initialize the first hidden state of the decoder.
� IMGE+D [9]: The first hidden states of both encoder and decoder are initialized with visual features extracted from the
images.
� Soft-Attention [14]: An additional spatial attention on visual feature maps is incorporated into the attention-based NMT
framework by taking all representations into account when generating context vectors.
� Hard-Attention [14]: This model employs two separate attention mechanisms, one attending to all text representations
and the other considering only one image feature at each time step, to generate image and context vectors.
� MNMT�CO_ATT�BI_ATT: As a variant of our model, we removed both the bi-directional neural network and the co-attention
mechanism fromMNMT. In this way, this variant degenerates to MNMTSRC+IMG [8], which uses a doubly-attentive decoder
to exploit visual feature maps and text hidden states independently when generating translations. Please note that it is
our most important baseline.
� MNMT-Big�CO_ATT�BI_ATT: It is a variant of MNMT�CO_ATT�BI_ATT, where the size of RNN hidden state is increased from 256 to
280. Compared with MNMT�CO_ATT�BI_ATT, it increases the parameter number by 9%, which is slightly more than that of
our model. Through this comparative experiment, we aim to fully analyze the impact of the additional parameters on
our model.

To further verify the effectiveness of different components in our model, we also provided the performance of the follow-
ing ablated versions of our model:

� MNMT�CO_ATT: The model only introduces the bi-directional neural network to refine both image and text representations.
� MNMT�BI_ATT: This model only exploits the co-attention mechanism to improve the modeling of both image and text con-
text vectors.

5.3. Experimental results

As shown in Table 1, for English-to-German multi-modal translation task, the lower and upper halves show the perfor-
mance of the models with and without pre-training, respectively. Using almost the same hyper-parameters,
MNMT�CO_ATT�Bi_ATT exhibits comparable performance to MNMTSRC+IMG, demonstrating that our re-implemented baseline
is competitive in performance. In the upper part of Table 1, the results across three evaluation metrics consistently show
that our proposed model and its variants MNMT�CO_ATT and MNMT�BI_ATT improve translation quality by large margins com-
paring to other models. Specifically, MNMT�CO_ATT obtains the relative improvements over the baseline models in all metrics.
The result suggests the effectiveness of employing the bi-directional attention network to refine both text and image repre-
sentations. Meanwhile, MNMT�BI_ATT also outperforms the baseline models according to all metrics, demonstrating that the
semantic interactions between text and image context vectors also contribute to the translation improvement. Finally, our
MNMT achieves the highest performance on all three metrics, 39.2, 56.6 and 40.5, respectively. This result indicates that text
and image are semantically complementary and thus they are able to act as mutual reinforcement for multi-modal NMT.
When pre-trained with additional back-translated data, our proposed model and its variants still outperform their corre-
sponding baselines. The results indicate that proposed model and its variants could effectively exploit the back-translated
data.

The upper part of Table 2 provides the experimental results of the models without pre-training on the German to English
multi-modal translation task and the lower part gives the results of the models that are pre-trained on back-translated
M30kC. Similar to the previous experimental results, our model also achieve better performance compared to all other base-
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Table 1
Experimental results on English to German multi-modal translation task. y indicates previously reported scores. Here we reported the mean and standard
deviation over 4 independent runs.

Model BLEU" METEOR" TER#
Text-only NMT [8,9] y 33.70 52.3 46.7
Text-only NMT [14] y 34.11 52.4 46.2

Parallel RCNNsy 36.50 54.1 -
MNMTSRC+IMG

y 36.50 55.0 43.7
IMGD

y 37.30 55.1 42.8
Soft-Attentiony 37.62 55.3 41.8
Hard-Attentiony 38.17 55.4 41.5

MNMT�CO_ATT�BI_ATT 37.0(0.3) 54.9(0.5) 42.7(0.2)
MNMT-Big�CO_ATT�BI_ATT 37.7(0.2) 55.3(0.3) 42.4(0.5)

MNMT�CO_ATT 38.5(0.5) 56.0(0.5) 41.1(0.4)
MNMT�BI_ATT 38.3(0.2) 55.8(0.3) 41.3(0.5)

MNMT 39.2(0.3) 56.6(0.3) 40.5(0.3)

Pre-training dataset: back-translated M30kC

Text-only NMT [8,9]y 35.50 53.4 43.3
IMGD

y 38.50 55.9 41.6
MNMTSRC+IMG

y 37.10 54.5 42.8
MNMT�CO_ATT�BI_ATT 37.4(0.4) 55.3(0.2) 42.0(0.2)

MNMT-Big�CO_ATT�BI_ATT 38.2(0.5) 55.7(0.4) 41.0(0.1)
MNMT�CO_ATT 39.6(0.4) 57.0(0.3) 40.6(0.1)
MNMT�BI_ATT 40.1(0.4) 57.4(0.3) 39.8(0.4)

MNMT 40.3(0.3) 57.5(0.2) 39.9(0.3)

Table 2
Experimental results on German to English multi-modal translation task. y indicates previously reported scores. Here we reported the mean and standard
deviation over 4 independent runs.

Model BLEU" METEOR" TER#
Text-only NMT [8,9]y 38.20 35.8 40.2

MNMTSRC+IMG
y 40.60 37.5 37.7

IMGE+D
y 41.90 37.9 37.1

MNMT�CO_ATT�BI_ATT 40.6(0.5) 37.4(0.2) 37.9(0.4)
MNMT-Big�CO_ATT�BI_ATT 40.7(0.4) 37.5(0.2) 37.9(0.2)

MNMT�CO_ATT 41.2(0.3) 38.1(0.3) 37.4(0.3)
MNMT�BI_ATT 42.2(0.5) 38.4(0.2) 36.5(0.4)

MNMT 42.3(0.3) 38.6(0.2) 36.4(0.4)

Pre-training dataset: back-translated M30kC

Text-only NMT [8,9]y 42.6 38.9 36.1
MNMTSRC+IMG

y 43.2 39.0 35.5
MNMT�CO_ATT�BI_ATT 43.1(0.3) 38.9(0.3) 35.5(0.2)

MNMT-Big�CO_ATT�BI_ATT 43.2(0.2) 39.0(0.1) 35.4(0.2)
MNMT�CO_ATT 43.2(0.3) 39.0(0.2) 35.4(0.4)
MNMT�BI_ATT 43.5(0.2) 39.2(0.3) 35.1(0.4)

MNMT 43.7(0.4) 39.3(0.3) 35.3(0.2)
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line models. Furthermore, we note that MNMT�BI_ATT exhibits better performance than MNMT�CO_ATT and is comparable to
MNMT. This indicates that high-level text-image semantic interactions can achieve a comparable or even better performance
than the model with fine-grained text-image semantic interactions, when translating source language into an ‘‘easier” target
language, i.e. the language with less morphology. When pre-trained on back-translated M30kC, both MNMT�BI_ATT and
MNMT significantly improve over the baseline models while MNMT�CO_ATT is only comparable to the baselines. The results
suggest that although multi-modal model could benefit from additional back-translated data, introducing text-image
semantic interactions can further improve translation quality.
5.4. Effect of pre-trained shared bilingual word embeddings

In this group of experiments, we investigated the impact of a pre-trained shared bilingual word embeddings. The large-
scale training corpus we used is the commonly-used WMT 2015 English-German parallel corpus, which consists of about
4.46 M sentence pairs with 116.1 M English words and 108.9 M German words. According to the BPE vocabularies extracted
from our Multi30k dataset, we first converted the parallel sentences of the WMT corpus into subword sequences, and then
followed Artetxe et al. [1] to obtain the shared bilingual subword embeddings. Afterwards, we used these subword embed-
dings to initialize our model, which was finally fine-tuned using M30KT.
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Table 3 reports the experimental results. We can observe that using pre-trained WMT bilingual BPE embeddings leads to
performance declines on our model and its two variants, respectively. The underlying reason is that the domain (News topic)
of theWMT corpus is significantly different from that of our Multi30k dataset. The only exception is MNMT-Big�CO_ATT�BI_ATT,
of which performance is slightly improved. For this result, we speculate that its larger parameter dimension enables the
model to make better use of the pre-trained ebmeddings.

5.5. Effect of pre-training our decoder

In this group of experiments, we investigated the effect of another pre-training strategy on our model. Specifically, we
first pre-trained the decoder of our model using the German sentences of commonly-used WMT English-German parallel
corpus, and then fine-tuned our whole model using M30KT. It should be noted that both MNMT�CO_ATT and MNMT are
not suitable for pre-training using large parallel text-only corpora, since their bi-attention mechanisms involve the utiliza-
tions of images. Thus, we conducted experiments using MNMT�BI_ATT.

From Table 4, we can observe that when directly using the pre-trained decoder parameters, the performance of
MNMT�BI_ATT significantly drops. Even if we fine-tune the decoder parameters on our Multi30k dataset, the performance
of MNMT�BI_ATT is still slightly reduced due to the domain conflict between the pre-trained WMT corpus and the training
corpus.

5.6. Case study

In order to know how our model improves the performance of the multi-modal NMT, we compared the translations pro-
duced by different models. Table 5 shows an English-German multi-modal example from the M30kT test set. In this case, we
notice that MNMT�CO_ATT�BI_ATT misses the key word ‘‘claps” in the source sentence. Meanwhile, both Soft-Attention and
Hard-Attention suffer from the same problem even if they exploit two separate attention mechanisms to capture related text
and image contexts. However, it is remarkable that our proposed model and its variants produce correct translations. This
result proves the effectiveness of introducing text-image semantic interactions and reveals the weakness of traditional
multi-modal NMT model, where the processes of modeling text and image semantics are independent of each other.

Table 6 shows a German-English multi-modal translation example from the M30kT test set. We notice that multi-modal
NMT models (IMGE+D, MNMT�CO_ATT�BI_ATT and MNMT�CO_ATT) are unable to correctly translate the German words ‘‘trinkt
shots” (drinking shots) into English. In contrast, the translations generated by MNMT�BI_ATT and MNMT, although not novel,
are still correct. The underlying reason may be that: co-attention mechanism aims at dealing with high level text-image
semantic interactions that have incorporated global information while bi-attention mechanism is used to cope with local
fine-grained text-image semantic interactions in a relatively lower level. Considering that more global information is needed
during the translation of ambiguous words, co-attention mechanism performs better at discriminating ambiguous semantics
of words than bi-attention does.

To further verity the merit of our model, in Fig. 3, we visualized the visual and textual attention weights when generating
the target word ‘‘klatscht”. We observe that during the first attention operation, our model fails to focus on the corresponding
source word ‘‘claps” and instead places greater weights on the ‘‘riding”, ‘‘on” and ‘‘.”. Then, our model assigns greater weights
on regions corresponding to the action ‘‘claps” when generating the visual context vector. Finally, our model performs text-
image semantic interactions and then reconsiders the source sentence. It is worth noticing that the source word ‘‘claps”
obtains the highest weight at this time. This result demonstrates that introducing text-image semantic interactions is able
to enhance the capability of attention mechanism and further improve the translation quality.

5.7. Experimental results on english to French, English to Czech Multi-modal Translation Tasks

To further investigate the effectiveness and generality of our model, we carry out experiments on English to French, and
English to Czech multi-modal translation tasks. We also chose Multi30k datasets as our experimental datasets. Besides, we
used the same settings as our previous English-German experiments. In this way, the sizes of our French and Czech vocab-
ularies are 9,426 and 6,574, respectively. However, since the Multi30k datasets do not contain the extra corpus as English-
German M30kC, we are unable to investigate the performance of various models pre-trained using back-translated pseudo
parallel sentences.

Tables 7,8 provide the experimental results on the two translation tasks. Similar to previous experiment results, our
model and its variants significantly outperform both MNMT�CO_ATT�BI_ATT and MNMT-Big�CO_ATT�BI_ATT on almost all test sets.
Therefore, we confirm the validity and generality of our model in different language pairs.
6. Conclusion and future work

In this paper, we have successfully extended the conventional multi-modal NMT to a novel model with cross-modal
semantic interaction modeling, which introduces a bi-directional attention for refining text and image semantic representa-
tions and a co-attention for enhancing context vectors. Experimental results on English-German and German-English trans-
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Table 3
Experimental results on English to German multi-modal translation task with large-scale pre-trained bilingual word embeddings. Similarly, we listed the mean
and standard deviation over 4 independent runs.

Model BLEU" METEOR" TER#
MNMT�CO_ATT�BI_ATT 37.0(0.3) 54.9(0.5) 42.7(0.2)

MNMT-Big�CO_ATT�BI_ATT 37.7(0.2) 55.3(0.3) 42.4(0.5)
MNMT�CO_ATT 38.5(0.5) 56.0(0.5) 41.1(0.4)
MNMT�BI_ATT 38.3(0.2) 55.8(0.3) 41.3(0.5)

MNMT 39.2(0.3) 56.6(0.3) 40.5(0.3)

Using pre-trained WMT 2015 shared bilingual word embeddings

MNMT�CO_ATT�BI_ATT 36.3(0.2) 54.7(0.2) 43.4(0.1)
MNMT-Big�CO_ATT�BI_ATT 37.9(0.1) 55.5(0.2) 42.2(0.1)

MNMT�CO_ATT 37.6(0.3) 55.4(0.1) 42.3(0.2)
MNMT�BI_ATT 38.1(0.3) 55.8(0.1) 42.0(0.1)

MNMT 38.8(0.1) 56.3(0.1) 41.3(0.3)

Table 4
Experimental results on English to German multi-modal translation task with a pre-trained decoder. Likewise, we reported the mean and standard deviation
over 4 independent runs.

Model BLEU" METEOR" TER#
MNMT�CO_ATT�BI_ATT 37.0(0.3) 54.9(0.5) 42.7(0.2)

MNMT�BI_ATT 38.3(0.2) 55.8(0.3) 41.3(0.5)
pre-trained decoder w/o fine-tune 22.5(0.5) 24.4(0.9) 56.4(0.7)
pre-trained decoder w/ fine-tune 37.9(0.3) 55.3(0.3) 41.7(0.2)

Table 5
An English-German multi-modal translation example generated by different models. Note that the word
‘‘klatscht” in blue is the German translation of source word ‘‘claps”. Here we directly cited the translation results
of Soft-attention and Hard-Attention from [14].

Source a child claps while riding on a woman ’s shoulders.
Reference ein kind sitzt auf den schultern einer frau und .

Soft-attention ein kind, das sich auf der schultern eines frau reitet, fahrt auf den schultern.
Hard-Attention ein kind in der haltung, wahrend er auf den schultern einer frau fahrt.
MNMT�CO_ATT�BI_ATT ein kind kniet auf der schultern einer frau.
MNMT�CO_ATT ein kind und reitet auf den schultern einer frau.
MNMT�BI_ATT ein kind in den schultern einer frau.
MNMT ein kind auf den schultern einer frau.

Table 6
A German-English multi-modal translation example generated by different models. Here we directly cited the
translation result of IMGE+D from [9].

Source eine gruppe junger menschen trinkt shots in einem mexikanischen setting.
Reference a group of young people take shots in a mexican setting.

IMGE+D a group of young people in a Mexican restaurant.
MNMT�CO_ATT�BI_ATT a group of young people are in a mexican.
MNMT�CO_ATT a group of young people are in a mexican club.
MNMT�BI_ATT a group of young people are having a drink in a mexican setting.
MNMT a group of young people are drinking in a mexican setting.
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lation verified that incorporating text-image semantic interactions remarkably improves translation quality compared to the
conventional multi-modal NMT model.

Our future works include the following aspects. First, since previous approaches just use image features that does not
explicitly represent high-level semantic concept (e.g. attribute, object), we want to extract fine-grained semantic facts from
images and investigate how to incorporate it into the multi-modal NMT. Second, we will adapt the proposed model into the
multi-modal NMT models with other encoders, such as context-aware based encoder [49], hierarchical RNN-based encoder
[40]. Third, inspired by the success of variational NMT [50,39,10], variational multi-modal NMT with semantic interactions
will also be one focus of our future work. Besides, we will explore a more effective multi-modal NMT framework to better
utilize additional image description datasets, such as the Microsoft COCO Dataset.
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Fig. 3. Visualization of the co-attention process for the M30kT test set.

Table 7
Experimental results on English to French multi-modal translation task. Here we reported the mean and standard deviation over 4 independent runs.

Model BLEU" METEOR" TER#
MNMT�CO_ATT�BI_ATT 57.3(0.5) 71.4(0.5) 27.5(0.4)

MNMT-Big�CO_ATT�BI_ATT 57.8(0.5) 71.6(0.5) 27.2(0.2)
MNMT�CO_ATT 58.6(0.5) 72.5(0.4) 26.8(0.5)
MNMT�BI_ATT 58.7(0.5) 72.8(0.1) 26.6(0.3)

MNMT 59.2(0.3) 73.4(0.2) 26.0(0.4)

Table 8
Experimental results on English to Czech multi-modal translation task. We also provided the mean and standard deviation over 4 independent runs.

Model BLEU" METEOR" TER#
MNMT�CO_ATT�BI_ATT 30.6(0.4) 28.8(0.3) 46.2(0.4)

MNMT-Big�CO_ATT�BI_ATT 30.6(0.5) 28.9(0.2) 46.4(0.3)
MNMT�CO_ATT 31.1(0.3) 29.2(0.2) 46.1(0.3)
MNMT�BI_ATT 31.2(0.4) 29.3(0.4) 45.9(0.2)

MNMT 31.6(0.5) 29.7(0.2) 45.4(0.5)
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