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Optimized Large-Scale Road Sensing
Through Crowdsourced Vehicles
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Abstract— Modern vehicles are gradually becoming powerful
mobile sensing, communication, computing and storage plat-
forms, which bring about the concept of vehicular urban sensing
that leverages sensor nodes as an effective and affordable solution
for large-scale and fine-grained sensing. And there is a trend
to combine the vehicular sensing and outsourcing technologies
to solve the large-scale urban road sensing problem. However,
how to select appropriate participated vehicles, how to least
interrupt the original routes of vehicles, and how to actively
maximize the benefit of the sensing remain challenging prob-
lems. In this paper, we introduce a Crowdsourced Vehicular
Sensing (CVS) framework based on more realistic assumptions
of the vehicular sensing, which consists of three steps: vehicle
recruitment, candidate path calculation, and path computing.
We define a maximal weighted sensing paths (MWSP) problem,
which is NP-Complete, in vehicular crowdsensing scenario and
use heuristic methods to speed up the solving process for large-
scale crowdsensing in urban road networks. The MWSP problem
is formulated as a maximal satisfiability (MaxSAT) problem, and
a least-interrupted urban sensing strategy is adopted. So trips
are least disrupted when conducting the sensing tasks, which
would increase the drivers’ willingness to participate in urban
sensing. Experiments based on real-world road-network and
historical origin-destination datasets verify the effectiveness of the
proposed method. The results show that the proposed algorithm
outperforms other solutions and it can solve the vehicular
crowdsensing problem effectively and efficiently.

Index Terms— Vehicular crowdsensing, maximal weighted
sensing paths, least-interrupted urban sensing.
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I. INTRODUCTION

W ITH the advancement of mobile sensing and communi-
cation technologies, there has been increasing research

on the sensing of urban cities, which is also called urban
sensing [1]. Urban sensing leverages sensor nodes, e.g. fixed
road-side sensors, probe vehicles and mobile phones, as an
effective and affordable solution for large-scale and fine-
grained sensing in road networks or city areas [2]–[4].

Fixed sensors are deployed along the roads to collect traffic
data in the traditional urban sensing. But due to the high
costs of installation and maintenance, the more cost-effective
probe vehicles are used as an alternative for urban sensing [2].
Probe vehicles are equipped with various sensing units, and
they could be categorized into two types in the scenario of
urban sensing [5]. The “active” probing vehicles are vehicles
instrumented and then sent into the field for travel time data
collection. They are solely for the tasks of urban sensing,
e.g. gathering the traffic data or street view data. They incur
cost on the energy and labor, and would increase the traffic
flow themselves, which have a risk of deteriorating the traffic
states. Conversely, “passive” probing vehicles are vehicles that
are already in the traffic stream for purposes other than data
collection. This refers to the crowdsourcing model in which
an urban sensing task could be divided among participants
to achieve a cumulative result. We call this new paradigm
“public crowdsensing” [6], which includes generalized and
large-scale monitoring such as environment, traffic monitoring,
map updating, public safety, noise pollution assessment, etc.
The aggregated data are often shared to the public and can be
reused by multiple applications [4], [7]. Fig. 1 depicts a sce-
nario of public crowdsensing where vehicles move within the
urban area. They schedule trips with origins and destinations
as any traditional vehicles. But they are also equipped with
sensors, GPS receivers, and wireless communication modules
(e.g., 4G and DSRC [8] modules), so they could sense the
environment and generate the sensing data (e.g., temperature,
C O2 concentration), similar to the probe vehicles. A central
cloud server, or road-side edge nodes, is also deployed as
a crowdsourcing server for the urban sensing. Vehicles are
selected or recruited by a crowdsourcing system, and they are
motivated or paid to conduct the sensing tasks. The server
would re-schedule trips for the vehicles to maximize the
overall benefit of urban sensing, while at the same time not
affecting the vehicles’ scheduling too much. In other words,
it adopts a “least-interrupted” urban sensing strategy that the
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Fig. 1. Scenario of vehicular crowdsensing. Vehicles equipped with sensors
move within the urban area. Each vehicle senses the area and generates data
that could be collected through wireless communications.

Fig. 2. Example crowdsensing scenario: real-time road surface perception
and detection.

detailed paths of trips would be changed a little but still within
a user-defined bypass tolerance range.

The vehicular crowdsourced sensing approach has several
advantages over the traditional probe vehicle-based solutions.
First, it has lower deployment cost because more and more
vehicles are equipped with various sensors. It would be easier
to recruit vehicles for the sensing tasks, especially with the
rapid advancement of self-driving and electrical vehicles.
Second, the vehicles are already within the road network,
so they do not increase the traffic flow of the roads. And
more importantly, their trips are not disrupted when conduct-
ing the sensing tasks, which would greatly increase drivers’
willingness to participate the urban sensing. Third, it provides
optimization opportunities for the urban sensing system, where
various algorithms could be adopted to improve the sensing
coverage of the urban area and increase the overall sensing
benefits. Fig. 2 is the crowdsensing scenario of real-time
road surface perception and detection. Vehicles are deployed

to gather the data of road surfaces and road conditions through
cameras, and computer vision algorithms are then conducted
to percept these data. The application is to cover and sense
the maximal amount of road segments with the least operation
cost.

However, public vehicular crowdsensing is also a challeng-
ing issue given there are a large number of dynamic vehicles
in the road network and they are with different pursuit of
interests. It brings up issues on how to recruit suitable vehicles
and how to properly give incentives for the participated
vehicles. On one hand, there is significant sensing overlap
existed among vehicles. Selecting all vehicles would result in
a large amount of redundant data, so a careful design of public
vehicular selection and efficient solving algorithms are needed
to maximize the coverage while also limiting the costs. On the
other hand, the participated vehicles must be rewarded as there
is cost for vehicles to conduct the sensing tasks [9], especially
when the trip of data gathering tasks might conflict with the
original trips or scheduling of drivers. Existing works focus on
the coverage of vehicle recruitment and vehicle crowdsourcing
task [10]. Vehicles are either assumed to be “workers” that can
go to specific locations as required to conduct the sensing task,
or assumed not to purposely divert from their original paths
or routes to conduct sensing tasks. And the cost or benefits
of sensing operations are assumed to be equal, which is not
viable in real-world scenarios where a weighting mechanism
of sensing tasks is needed to quantify the sensing tasks and
to maximize the overall benefit of public sensing tasks.

In this paper, we introduce a Crowdsourced Vehicular Sens-
ing (CVS) framework based on more realistic assumptions on
the constraints and benefits of vehicular sensing. We propose
an innovative framework that systematically senses the road
in large scale and with low cost, which includes the vehicle
recruitment component, the candidate path calculation com-
ponent, and the path computing component, and the vehicu-
lar crowdsensing is optimized through solving combinational
problems on the weighted road networks. Our method would
extract knowledge to recruit the most promising vehicles based
on the historical trajectory datasets, and it is effective because
the recruited vehicles could re-schedule their paths to cover
the “untouched” road segments to sense the environment. Our
method has the least disruption to the transportation when
conducting the sensing tasks as there is a threshold for the
detour ratio. It trades a balance between the effectiveness
and non-interruption of crowdsensing, and would increase the
drivers’ willingness to participate in the urban sensing. The
major contributions of this paper are as follows:
• We introduce the maximal weighted sensing paths

(MWSP) problem in vehicular crowdsensing scenario.
It is based on more realistic assumptions on the benefits of
vehicular sensing, where road segments are set different
weights of benefit based on the large-scale trajectory
datasets, and the objective is to maximize the overall
benefits of sensing.

• We propose a general crowdsourced vehicular sens-
ing framework that adopts heuristic methods to speed
up the solving process for large-scale crowdsensing in
urban road networks. The framework includes the vehicle
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recruitment, the candidate path calculation, and the path
computing components. And we adopt a least-interrupted
urban sensing strategy where trips are least disrupted
when conducting the sensing tasks, which would increase
the drivers’ willingness to participate in the urban sensing.

• We conduct experiments on real-world road-network and
historical origin-destination datasets to verify the effec-
tiveness of the proposed methods. Experimental results
show that the problem could be solved effectively and
efficiently, and our scheme outperforms other algorithms.

The remainder of this paper is organized as follows.
Section II presents the related work of this paper. Section III
gives some preliminaries and formalizes the system model and
problem. Section IV presents the detailed crowdsourced vehic-
ular sensing framework, which includes vehicle recruitment,
candidate path calculation, and path computing components.
Section V presents the experimental studies and analysis.
Finally, section VI concludes the paper and presents some
future directions.

II. RELATED WORK

In this section we review three categories of related works
to position our work in the research community.

A. Mobile Crowdsourcing

The basic idea of crowdsourcing is to leverage the power
of crowd to collaboratively complete a complex task, where
each worker only completes much easier micro-tasks [11].
Crowdsourcing-based systems are widely used in domains
such as software engineering [12], data mining [13], urban
sensing [14], etc. It helps to solve industrial, academic, busi-
ness, and other problems.

In recent years the concept of spatial crowdsourcing or
mobile crowdsourcing becomes a hotspot in the research
community [3]. Mobile crowdsourcing involves the utilization
of mobile objects, e.g. smartphones or vehicles, to collect the
different sensor data at different locations. In general, a typical
mobile crowdsensing application does not harness the wisdom
or knowledge of the crowd. However, it offers avenues to
utilize both the sensor information as well as the knowledge
possessed by humans. Reddy et al. [15] developed a recruit-
ment framework to enable organizers to identify well-suited
participants for data collections based on geographic and tem-
poral availability as well as participation habits. It identifies
a group of users who are very suitable for perceptual tasks,
so as to enhance users’ interest in participation. He et al. [16]
proposed an efficient local ratio based algorithm (LRBA) to
solve the optimal task allocation problem, where sensing tasks
are with different requirements of quality of sensing and are
associated with specific locations and constrained time bud-
gets. Liu et al. [17] proposed the TaskMe framework for multi-
task allocation. It transformed the FPMT (few participants,
more tasks) problem using the Minimum Cost Maximum
Flow (MCMF) theory. And the MPFT (more participants,
few tasks) problem is addressed by the multi-objective opti-
mization theory. Xiong et al. [18] proposed a generic mobile

crowdsensing task allocation framework iCrowd, which oper-
ates with the energy-efficient piggyback crowdsensing task
model. It optimizes the task allocation with different incentives
and k-depth coverage objectives/constraints. Tang et al. [19]
proposed a crowdsourcing method CLRIC that automatically
extracts detailed lane structure of roads based on crowd-
sourcing. It filters the high-precision GPS data from the raw
trajectories and mines the number and locations of traffic
lanes through an optimized constrained Gaussian mixture
model. Hachem et al. [20] proposed a probabilistic registration
approach to reduce the number of the involved devices based
on a realistic human mobility model. The scheme allowed
devices to decide whether or not to register their sensing
services depending on the probability of others.

B. Vehicular Sensing

Cooperative vehicular and urban sensing is at the heart of
the intelligent and green city traffic management [21].

Lee et al. [22] proposed the MobEyes system for proactive
urban monitoring. The system exploits the vehicle mobility
to opportunistically diffuse concise summaries of the sensed
data, and it harvests these summaries and builds a low-
cost distributed index of the stored data to support various
applications. Hull et al. [23] proposed a data management
system CarTel for querying and collecting data from mobile
vehicles, which enables the application development with data
collected. Conceição et al. [24] used crowdsensing to sketch
the map of on-street parking spaces to help drivers find parking
slots. Delot et al. [25] proposed a pull-based data gathering
strategy called GeoVanet, which adopts a DHT-based (DHT,
dynamic hash table) model to identify a fixed geographical
location where a mailbox is dedicated to the query. Users are
able to send queries to a set of cars and find the desired
information in a bounded time. Placzek [26] introduced a
method of selective data collection for traffic control appli-
cations. The underlying idea is to detect the necessity of
data transfers on the basis of uncertainty determination of the
traffic control decisions, and sensor data are transmitted from
vehicles to the control node only at selected time moments.
Lindgren et al. [27] presented protocols for traffic-monitoring
in vehicular networks. They defined two operation modes,
multi-hop forwarding (MF) mode and delay-tolerant mode
(DM). During MF mode messages are forwarded through the
shortest path to the destination, while in DM mode messages
are only forwarded at intersections to keep them inside the
shortest path when the current carrier moves away. As the vol-
ume of sensed data might be large, there is also some research
on reducing the volume of sensed data and the cost of gath-
ering them. Lai et al. [21] proposed an efficient continuous
event-monitoring framework based on fog nodes in vehicular
network, where a two-level threshold strategy is adopted to
suppress unnecessary data upload and transmissions.

Most of the above-mentioned research of vehicular sensing
focuses on data gathering and communication techniques,
whose goal is to efficiently sense the environment using
vehicles and to effectively gather the desired data. Different
from these works, in this research we focus on crowdsourcing
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these sensing tasks to selective vehicles and maximizing the
benefit of sensing in large-scale road networks.

C. Vehicular Crowdsensing

Vehicular crowdsensing is a trend of research to combine
sensing and crowdsourcing through vehicles, which takes
advantage of the mobility of vehicles to provide location-based
services in large-scale areas [28].

Li et al. [29] formalized the vehicle selection problem as
cost control problems, and introduced 5 cost control methods:
pruning, task selection, answer production, sampling, and
miscellaneous. Xiong et al. [30] proposed the Crowdrecruiter
platform which utilizes the vehicle’s historical trajectory.
It attempts to select a subset from the recruitment vehicles to
meet the probability coverage constraints of multiple sensing
cycles. Xiao et al. [28] formulated the interactions between
a crowdsensing server and vehicles equipped with sensors
in the area of interest as a vehicular crowdsensing game.
They proposed a Q-learning based MCS payment strategy and
sensing strategy for the dynamic vehicular crowdsensing game.
Han et al. [31] proposed a trajectory-based vehicle election
scheme in vehicular crowdsensing where offline and online
model based algorithms are proposed for the recruitment
strategy. Osamu [32] proposed a reservation based proactive
route search. The route reservation cost is combined with
a distance cost. If there are many reservations on a link,
other cars avoid to choose the link. Xu et al. [9] designed a
scheme to efficiently incentivize the vehicle agents to match
the sensing distribution of the sampled data to the desired
target distribution with a limited budget. They formulate the
incentivizing problem as a new type of non-linear multiple-
choice knapsack problem, with the dissimilarity between the
collected data distribution and the desired distribution as the
objective function, and the incentive is customized by combin-
ing monetary incentives and potential task (ride) requests at the
destination. He et al. [10] proposed a participant recruitment
strategy for vehicle-based crowdsourcing based on the pre-
dicted trajectory. They defined spatial and temporal coverage
as two metrics for crowdsourcing quality to design greedy and
genetic approximation algorithm, but assumed a single vehicle
is sufficient to cover a geographical region at a specific time.

Most of the above works focus on the coverage of vehicle
recruitment and vehicle crowdsourcing task. As there are
a large number of vehicles on the road network, one key
research direction of vehicular crowdsensing is how to select
the appropriate number of users to complete the collection
task, so as to achieve high coverage of perception tasks.
In most cases, vehicles are either assumed to be “workers”
that can go to specific locations as required to conduct the
sensing task, or assumed not to purposely divert from their
original paths or routes to conduct sensing tasks. Different
from these assumptions, in this research we consider a scenario
of large-scale road network sensing with limited budget of
cost. Vehicles with sensing tasks still follow their origin and
destination routes, but can make small adjustments on the
original paths, so as to maximize the overall weight of benefit
within the budget. The most similar work to us is [33], which

proposed an evolution of the standard A* algorithm to enhance
vehicular crowd-sensing coverage. But the route is chosen in
a probabilistic way, among all those satisfying a constraint
on the total length of the path, and they do not consider the
problem of vehicular recruiting. Our approach is based on
more realistic assumptions on the benefits of vehicular sensing,
where road segments are set different weights of benefit by
extracting knowledge from the historical trajectory dataset.
The “detour ratio” is set as an important constraint for the
optimization, and the objective is to maximize the overall
benefits of sensing. In this way, on the premise of minimizing
the interference of vehicular routes, the perceived coverage
ratio of urban areas and the overall perceived benefit of sensing
can be improved.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The road network is represented by a directed graph G =
(V , E), where V is a set of vertices and E ⊆ V × V is a set
of ordered pairs of vertices, with a weight function w(E)→
R mapping edges to valued weights. The weight of an edge
e(u, v) ∈ E is w(e), which represents the benefit of visiting
the edge. A path is denoted by l(o, d), where o is the origin
and d is the destination, and it consists of a set of sequential
edges, i.e. Cl = {(o, x1), (x1, x2), . . . , (xk, d)}. Edge e is said
to be covered by path l if e ∈ Cl . Given a set of paths, e.g. L,
the set of its covered edges is defined as: CL = Cl1 ∪Cl2 . . .∪
Cl|L| . Also, a path l is covered by CL if ∀e ∈ l, e ∈ CL .

A route is denoted by r(o, d), where o is the origin and
d is the destination. A path l is said to be feasible to a
route r if they have the same origins and destinations, i.e.
l.o = r.o, l.d = r.d . A route usually has one shortest path and
multiple feasible paths. We define the set of τ -detour paths of
r , i.e. Pτ

r , as

{l | cost (l) ≤ (1+ τ ) · cost (l∗) and r is covered by l},
where cost (l) is the cost of path l, l∗ is the shortest path of r ,
and τ ≥ 0 is the detour ratio which indicates the extra cost of
path compared with the minimal cost.

We view the urban vehicular crowdsourced sensing problem
as to find a set of paths that are covered by a set of vehicles
and their corresponding routes so that the benefit of covering
or sensing these paths is maximized. So given a set of routes
R, a threshold budget, and a detour ratio r , the crowdsourced
sensing problem could be defined as a maximal weighted
sensing paths (MWSP) problem, which is to find a set of
paths L so that the edges covered by them have the maximal
weight under the budget. We are to maximize:

∑

e is covered by L

w(e) (1)

where e ∈ CL means e is covered by L. The τ -detour paths are
sets of edges which could be overlapped. The constraints are
described as: 1) the overall cost of paths in L is under some
threshold θ , i.e.

∑
l∈L f (l) ≤ θ . Here f is a function that

defines the cost of a path; 2) for every route in R, at most one
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Fig. 3. Illustration of a road network that selects the maximal weighted
sensing paths. Colored nodes o1, d1, o2, d2 denote the origin and destination
points of routes, the lines in solid gray denote the covered paths, and (c, w)
on the edge denotes the cost traveling the edge is c and the weight covering
the edge is w. (a) The set of covered edges have a total cost of 11 and a total
weight of 10; (b) the set of covered edges have a total cost of 12 and a total
weight of 14.

path is selected to the path set L, i.e. ∀r ∈ R, |Pτ
r ∩ L| ≤ 1,

where Pτ
r is the set of paths for route r given τ .

Example 1: Fig. 3 illustrates the selection of maximal
weighted sensing paths. Colored nodes o1, d1, o2, d2 denote
the origin and destination points of routes, and the paths
in solid gray denote the covered paths. (c, w) on the edge
denotes the cost traveling the edge is c and the weight covering
the edge is w. In Fig. 3(a), the shortest path for (o1, d1) is
l1 = o1 → c → b → o2 → d1. Its total cost cost (l1) is 7,
and the total weight w(l1) is 9. The shortest path for (o2, d2)
is l2 = o2 → b → d2. Its total cost cost (l2) is 4, and the
total weight cost (l2) is 2. The set of covered edges, i.e. CL ,
is denoted by the solid lines, which have a total cost of 11
(cost (l1) + cost (l2)) and a total weight of 10. In Fig. 3(b),
the path chosen for (o1, d1) is the same as in (a), but the
path chosen for (o2, d2) is l2 = o2 → a → d2. Its total
cost cost (l2) is 5, and the total weight cost (l2) is 5. The
detour ratio of new path for l2 is 0.25 (= 5

4 − 1). The set
of covered edges by l1 and l2 have a total cost of 12 and a
total weight of 14. So the maximal weighted sensing paths
CL are the set of paths in solid gray in (b). Without the
loss of generality the weight w could be defined according to
the sensing applications. For example, the weight of the edge
could be set inversely proportional to the number of vehicles
passing the road segments, so vehicles are encouraged and
motivated to choose less “popular” edges in the crowdsourced
sensing tasks.

B. Problem Formulation

The MWSP problem could be formulated as an integer
linear programming problem, and Table I summarizes the
notations used in this paper. {t1, . . . , t|E |} are a list of variables,
s.t. ti = 1 if ei is covered by CL . Given a route r , also an
origin-destination pair, let {lr

1, . . . , lr|Pτ
r |} be the set of τ -detour

paths of r . Also there is a list of variables

pr
1, . . . , pr|Pτ

r | (2)

s.t. pr
k = 1 if lr

k ∈ CL and pr
k = 0 otherwise. Let e1, . . . , e|E |

be the set of directed edges in G. Given a path lr
k , we introduce

a list of propositions

qr
1,k, . . . , qr|E |,k , (3)

s.t. qr
i,k = 1 if edge ei is covered by the kth path of route r ,

i.e. ei ∈ lr
k .

TABLE I

NOTATIONS AND THEIR MEANINGS

Having these notations defined, the MWSP problem is
formulated as a 0-1 Integer Linear Programming (0-1 ILP)
problem:

Maximize :
∑

1≤i≤|E |
w(ei ) ∗ ti (4)

Constraints :
∑

1≤k≤|Pτ
r |

pr
k ≤ 1, ∀r ∈ R (5)

ti = max(qr
i,k), r ∈ R, 1 ≤ k ≤ |Pτ

r |,
1 ≤ i ≤ |E | (6)∑

r∈R

∑

1≤k≤|Pτ
r |

f (lr
k ) ∗ pr

k ≤ θ (7)

ti ∈ {0, 1}, 1 ≤ i ≤ |E | (8)

pr
k ∈ {0, 1}, 1 ≤ k ≤ |Pτ

r |, r ∈ R (9)

Constraint 5 implies for each route, there exists at most
one path covered by the final path set. Constraint 6 is set by
the definition of ti and qr

i,k . Constraint 7 implies the overall
cost of the covered paths should be within the cost budget,
where f is a predefined cost function that could be tailored
as required. When f (lr

k ) = 1, the constraint is reduced to a
cardinality constraint that means there are at most θ sensing
paths in the final set. Constraint 8 and 9 imply the value range
of the variables as it is a 0-1 integer programming problem.
Note that only ti and pr

k are variables to be solved, while qr
i,k

could be computed before formulating the formula.

C. Problem Complexity

As it could be formulated as a 0-1 ILP problem, the MWSP
is NP-Complete [34]. Consequently, using 0-1 ILP for the
optimal solution of the MWSP problem becomes impractical
especially when there are a larger number of OD routes and
paths. Actually, in a large road network graph, each route has
a large number of paths even when with a relatively small
detour ratio constraint.

Also, as the crowdsourced sensing tasks are usually exe-
cuted in a continuous batched approach, e.g. dispatching tasks
every 5 minutes, the crowdsourced sensing system should
be executed timely and efficiently. So in the next section,
we further discuss methods that scale down the problem and
speed up the solving process.

Authorized licensed use limited to: Xiamen University. Downloaded on February 10,2022 at 01:01:51 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

IV. CROWDSOURCED VEHICULAR SENSING FRAMEWORK

In this section, we propose a Crowdsourced Vehicular
Sensing (CVS) framework that adopts heuristic methods to
scale down the crowdsensing problem and speed up the solving
process.

The key idea of the framework is to prune redundant and
similar trajectories on the large-scale weighted road networks,
given that there is a large overlap of paths among the routes
of vehicles. The CVS system would first recruit a subset
of participated vehicles by scanning the set of routes and
selectively choosing a subset of the OD pairs, then these pairs
are set as the input of the solver to calculate the final detailed
sensing paths. The CVS system consists of three components
or steps:

1) Vehicle Recruitment: the system recruits a set of vehicles
to participate the sensing while given a cost budget. So a
subset of routes, e.g. R′ ⊆ R, are selected from the set
of routes.

2) Candidate Paths Calculation: for every route, only part
of the paths are selected from all the set of feasible paths
as candidate paths given a detour ratio. Redundant and
similar paths are pruned to reduce the problem size;

3) Paths Computing: given the selected routes and their
feasible candidate paths, the solver computes a solution
with the final paths to maximize the overall sensing
benefits.

Heuristic approaches are adopted for the paths selection and
calculation. The detour ratio of paths plays an important role as
it controls the number of candidate paths and hence determines
the scale of the problem. Also, diversified paths are preferred
when selecting paths as the input of the solver.

A. Vehicle Recruitment

Crowdsourcing systems usually adopt incentive mechanisms
to encourage users’ involvement and participation. In this
research, we assume the CVS system has a budget of cost
or incentives, and it can maximally pay m vehicles for each
sensing epoch. We also assume the origins and destinations
of vehicles are known to the system by active reporting
or deduction, and the travelling paths are generated by the
navigation systems based on historical datasets.

Suppose the number of vehicles participating in the sensing
is n (n � m), each vehicle has an OD route and a plan path
p (e.g. shortest path), then at the vehicle recruitment phase
the goal is to find a set of paths L, s.t. the edges covered
by L have the maximal weight under the budget, that is to
maximize:

∑

e is covered by L

w(e) (10)

It is an ILP problem similar to that described in III-A, except
that each route has only one path and this path is already
known and defined as the plan path. So it is can be solved
easily and efficiently.

B. Candidate Paths Calculation

The urban road network is abstracted as a directed con-
nected graph. Each route has multiple feasible paths from
its origin to the destination, so the path searching algorithms
could be adopted to calculate a set of paths for each route. Here
we also introduce the concept of least-interrupted vehicular
urban sensing given a detour ratio constraint, hence the trips
are least disrupted when conducting the sensing tasks.

The classic A* algorithm [35] only returns a single shortest
path, and the k shortest path (KSP) routing algorithm [36]
usually returns a set of paths whose similarity is too high.
So we borrow the idea from reference [37] and introduce a
penalty factor to diversify the feasible paths. The basic idea
is to increase the traffic cost of each edge on the optimized
path when searching the next optimized path. Also, the detour
ratio τ and the similarity h̄ are introduced to terminate the
searching, i.e. the cost of path is no more than 1+ τ times of
that of the shortest path, and the similarity between the paths
does not exceed h̄.

Algorithm 1 presents the pseudocode of the detailed algo-
rithm. The algorithm consists of three steps: 1) Initialize the
set of L and PS, where PS is a pool set for feasible paths
(line 1). Also the shortest path from o to d is denoted by
p∗ (line 2); 2) Calculate an optimized shortest path p with
A* algorithm in graph G, add path p to the set PS, and add
the penalty to graph G based the penalty factor (lines 4-6).
Function add_penalty(G, p, δ) would multiply the weight
cost of each edge on path p by (1+δ). Repeat these operations
until there are enough feasible paths in PS. For example, set
max_pool_si ze as 2K , so there are 2K paths in PS; 3) For
each path p in PS, calculate its detour ratio and similarity
with other paths (lines 8-9). If the detour ratio is less than
1+ τ and the similarity does not exceed h̄, the path is added
to L (line 11). The algorithm terminates once there are enough
paths in set L (line 12). In this way, the algorithm selects K
paths that meet the detour ratio and similarity constraints in
the pool set PS. Here we assume the impact of re-routing
is equal for all the drivers, but our algorithm could be easily
extended to handle the scenarios that each driver has a different
cost/negative impact. We can change the detour ratio τ to τi in
line 10 in Algorithm 1, where i indicates the index of vehicle.
Note that the number of paths obtained may be less than K
as all paths in L should meet the similarity constraint h̄. The
candidate paths are diversified and the problem is scaled down.

C. Path Computing

After vehicle recruitment and path selection, redundant
paths are pruned and the problem is scaled down. Through
careful design, we just formulate the MWSP problem as a
maximal satisfiability (MaxSAT) problem, which could be
solved efficiently by solvers.

Given a route r , also an origin-destination pair, let
{lr

1, . . . , lr|Pτ
r |} be the set of τ -detour paths of r . We introduce

a list of propositions

pr
1, . . . , pr|Pτ

r | (11)
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Algorithm 1 K Shortest and Diversified Path Routing
Algorithm
Input : graph G = (V , E), route r(o, d), number of

paths K , detour ratio τ , similarity constraint h̄,
penalty factor δ

Ouput: set of feasible paths L for r

1 L ← ∅, PS ← ∅;
2 p∗ = A_star(G, o, d);
3 while si ze(PS) < max_pool_si ze do
4 p← A_star(G, o, d);
5 PS.add(p);
6 G ← add_penalty(G, p, δ);

7 for each path p in PS do
8 p.detour = cost (p)

cost (p∗) ;
9 p.sim = max{sim(p, s)|s ∈ L};

10 if p.detour ≤ 1+ τ and p.sim < h̄ then
11 L .add(p);

12 if si ze(L) > K then
13 break;

14 return L;

s.t. pr
k = 1 if lr

k ∈ CL and pr
k = 0 otherwise. Therefore we

have

pr
1 ∨ . . . ∨ pr|Pτ

r | (12)

for all r ∈ R, and

pr
j →

∧

1≤i≤|Pτ
r | and i �= j

¬pr
i (13)

for all r ∈ R and 1 ≤ j ≤ |Pτ
r |. Thus we have |Pτ

r | ·(|Pτ
r |−1)

binary clauses here. Constraint 12 implies there is at least
one path of route r covered in the set CL . In constraint 13,
pr

j ∈ 0, 1 is the variable that indicates whether the kth path of
route r is selected. If any path, e.g. pr

j , is selected, then all the
other paths should not be selected. So constraint 13 implies
there is only one path for route r covered in the set CL .

Let e1, . . . , em be the set of directed edges in G. Given a
path lr

k , we introduce a list of propositions

qr
1,k, . . . , qr

m,k, (14)

s.t. qr
i,k = 1 if edge ei is covered by the kth path of route r ,

i.e. ei ∈ lr
k . Based on this, we introduce a list of propositions

t1, . . . , tm s.t. ti = 1 if ei is covered by CL . Thus we have

ti ↔
∨

r∈R

∨

1≤k≤|Pr
τ |
(pr

k ∧ qr
i,k) (15)

for 1 ≤ i ≤ m. Constraint 15 implies that if edge ei is covered,
at least one route with a feasible path exists, which contains ei

and the path is covered by set CL . Also, if there is any route
with a feasible path covered by set CL , and the path contains
ei , then edge ei should be covered by CL . Note that qr

i,k can
be computed before transforming this formula.

Fig. 4. The map of taxi trajectory coverage in Xiamen City based on the
Xiamen Taxi Dataset. The color of each road segment is determined by the
number of times covered by taxis.

Finally we are to maximize

max
∑

1≤i≤m

w(ei ) ∗ ti . (16)

where t1, . . . , tm are m soft clauses with weights
w(e1), . . . , w(em). In this way, the MWSP problem is
formulated as a weighted MaxSAT problem.

There are many solvers for MaxSAT problem with varied
performances. In this research we just choose Open-WBO
MaxSAT Solver [38] to solve this problem, which won 2 gold
medals and 1 silver medal in the MaxSAT Evaluation 2017.

V. EXPERIMENTAL STUDY

A. Environment Setting

We conduct experiments to study and verify the perfor-
mance of the proposed algorithms on vehicular crowdsourcing.
The experiments are based on the real road network data
of Xiamen City, China. We obtained the Xiamen map from
OpenStreetMap (longitude range: 118.066◦ ∼ 118.197◦, lati-
tude range: 24.424◦ ∼ 24.561◦), and adopted the NetworkX
framework1 to model road network as a graph and simu-
late the experiment. There are 52479 road segments/edges
and 49773 intersections/vertices. The cost weight of edges
are given based on real-world datasets. The Xiamen Taxi
Dataset [39] is used for the simulation, which consists of one-
month trajectory data of about 5,000 taxicabs in Xiamen City,
China during July 2014, where there are about 220 million
GPS position records and 8 million live trips. The average
number of times, e.g. |c|, covered by the taxis for every
road segment hourly is first calculated, then the weight of the
edge is set inversely proportional to |c|. Hence vehicles are
encouraged and motivated to choose less “popular” edges for
sensing in the crowdsourced sensing tasks. The weight setting
is straightforward, but other customized methods, e.g. based
on historical datasets or predictive methods, would be adopted.

1https://networkx.github.io/
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Fig. 5. (a) Regions in red rectangle are the main area of origins and destinations. 50% of the origin and destination points (in red) of the routes are located
within main regions, the remaining OD points (in green) are randomly distributed in the map. (b) The edges in green color are road segments that covered
by the 200 selected vehicles. Paths are diversified to maximize the weight. (c) Points in blue are the 400 OD points of the selected vehicles, edges in red are
covered road segments. The benefit of weight increases to 465,474, and achieves 96.62% of the benefit sensed by the 1000 vehicles.

By default there are 1000 vehicles in the road network, yet
only 200 vehicles are to be recruited for the crowdsourced
sensing tasks due to limited budget. The 1000 vehicles are
randomly selected from the dataset and they move according
to their trajectories in the simulation. If a vehicle is recruited
in the crowdsensing tasks, it would follow the instructions of
the CVS system to take a detour. The detour ratio is set 0.3,
the similar factor is set 0.7, the penalty factor is set 2, and the
number of feasible paths for a route, K , is set 10. The optimal
travelling paths are assumed to be generated by the navigation
systems based on historical datasets (e.g. by the Google Map.
For the heuristic and local search algorithms the maximal cut
time is 200 seconds.

B. Metrics and Compared Algorithms

The following metrics are adopted for algorithm evaluation:
• Total benefit: the maximal benefit of the sensing paths as

defined in Eq. 1 as the cost weight of all covered edges;
• Coverage ratio: the ratio of edge coverage, which is

calculated by dividing the number of all covered edges
by the total number of edges in the graph.

• Time efficiency: the running time that an algorithm con-
sumes (or the cut off time) to get the results.

The maximal weighted sensing paths (MWSP) problem is
NP-complete, which usually adopts heuristic approaches to
get the solutions. Besides the proposed algorithm, we also
conduct the following algorithms in the path computing phase
for comparison:

1) Random: a random sensing algorithm that 200 vehicles
are randomly selected out of the 1000 vehicles for the
sensing.

2) Opportunistic: a sensing algorithm that all the vehicles
opportunistically sense the road segments with a proba-
bility of 20%.

3) OTB [31]: an off-line trajectory based greedy algorithm
which chooses a near-optimal vehicle set. Depending
on the trajectory information of all the vehicles, the
algorithm selects the best K vehicles from the set of
participating vehicles, which are expected to achieve the
biggest union coverage.

4) AStar [33]: an evolution of the standard A* algorithm
to enhance vehicular crowd-sensing coverage. The route
is chosen in a probabilistic way among those satisfying
a detour constraint on the total length of the path, but it
does not consider the problem of vehicular recruiting.

5) Hill Climbing: an iterative algorithm that starts with an
arbitrary solution to a problem, then attempts to find a
better solution by making an incremental change to the
solution [40]. It is a greedy algorithm that travels each
OD path set and selects a path from the OD path set,
and joins the path to current solution to maximize the
current weight.

6) Simulated Annealing: a stochastic optimization algo-
rithm based on Monte-Carlo iterative solution strat-
egy [40]. It models the physical process of heating a
material and then slowly lowering the temperature to
decrease defects, thus minimizing the system energy.
The local optimal solution jumps probabilistically and
eventually tends to global optimal.

7) Genetic Algorithm [41]: a computation model that sim-
ulates the natural evolution of Darwin’s biological evo-
lution theory and the biological evolution process of
genetic mechanism. It generates high-quality solutions
to optimization and search problems by relying on bio-
logically inspired operators such as mutation, crossover
and selection.

C. Overall Results

The OD pairs are selected from the real-world dataset.
As illustrated in Fig. 5(a), two regions (in red rectangle)
are defined as the main area of origins and destinations.
50% of the origin and destination points (in red) of the
routes are located within these regions when 1000 vehicles
participate in the crowdsourced sensing tasks. The remaining
OD points (in green) are randomly distributed on the map.
The concentration of the OD points increases the trajectory
redundancy and helps to test the effectiveness of our vehicle
recruitment strategy.

Our crowdsensing framework combines the vehicle recruit-
ment phase and the path computing phase, where the former is
to prune redundant and similar trajectories on the large-scale
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TABLE II

COMPARISON OF ALGORITHMS UNDER DEFAULT PARAMETERS

weighted road networks. The vehicle recruitment problem is
converted into an integer linear programming (ILP) prob-
lem, and solved by classic optimization engines, e.g. CPlex.2

200 out of the 1000 vehicles are selected by the solver to
participate in the final sensing tasks. As shown in Fig. 5(b),
the road segments in green color are paths covered by these
200 vehicles and they are diversely dispersed in the road
network. And the total benefit of weight of the 1000 vehicles
to sense according to their original route is 486,754, and while
that of the 200 recruited vehicles is 426,234. The total benefit
of weight decreases by 12.43%, yet 80% of the crowdsourced
budget, i.e. the recruited vehicles, are saved. And by further
processing within our CVS framework, the final sensing tasks
and covered road segments are illustrated in Fig. 5(c). 400 OD
points of the 200 vehicles are in blue color, and the covered
road segments are in red. The benefit of weight increases to
465,474, and achieves 96.62% of the benefit sensed by the
1000 vehicles.

Table II shows the overall results of the compared algo-
rithms given that the 200 vehicles have been recruited. Our
algorithm has the maximal weight of benefit at 465,474
which has the best performance of all schemes. The proposed
algorithm has more than 3 percent of benefit advantage than
Hill Climbing, Genetic algorithm and Simulated Annealing
algorithm. The proposed algorithm also has the highest cov-
erage ratio at 0.3663. Paths in the Random scheme are not
optimized, which leads to high overlapped ratio among road
segments, resulting in low coverage ratio. In the Opportunistic
scheme, vehicles randomly sense the road segments, which
leads to unstable sense results. The ratio of overlapped road
segments is also high, resulting in low coverage ratio, which
is 0.0967. The Hill Climbing algorithm is a greedy algorithm,
it terminates at 46 seconds and achieves benefit weight at
450,970 as it is easy to fall into the local optimum. The
Genetic algorithm and the Simulated Annealing algorithm
achieve similar results as the Hill Climbing algorithm when the
cutoff time is set to 200 seconds. The AStar algorithm extends
the paths in a probabilistic way, and the path computing is
based on the simulated annealing, so its performance is similar

2https://www.ibm.com/analytics/cplex-optimizer

Fig. 6. The effect of the number of recruited vehicles on the weight of
benefit and coverage ratio.

to that of SA. The OTB scheme has the shortest running time,
but it achieves a poor benefit weight at 316,238, which is
about 32% lower than the proposed algorithm. Section V-D.5
and Fig. 11 further illustrate the impact of the running time
on the algorithms.

D. Analysis of Impact Factors

We also vary the parameters to study the impact of factors
for the solvers to calculate the final paths. The number
of crowdsourced vehicles, the detour ratio, the number of
maximal paths for a route, the similarity threshold among
feasible paths, and the penalty factor are controlled in the
experiments to study and analyze their impact in this section.

1) Number of Recruited Vehicles: In this research, the
number of recruited vehicles is set as the main constraint
of budget in the crowdsourced sensing tasks. Fig. 6 (a)
shows that the weight of benefit increases with the number
of recruited vehicles. The weight of the proposed algorithm,
denoted as max-sat, goes from 21,873 to 465,474 when the
budget of recruited vehicles increases from 50 to 200. A larger
budget means there are more vehicles available for doing the
sensing tasks, hence more road segments would be covered
and the weight of benefit would increase accordingly. Yet
when the number increases further, e.g. to 300, the weight
of benefit increases less than 1%. This is because when more
vehicles participate in the sensing tasks, some vehicles would
cover the same road segments. This leads to redundancy of
sensing and does not increase the weight of benefit. Fig. 6 (b)
shows the impact of recruited vehicles on the coverage ratio.
The coverage ratio increases with the number of recruited
vehicles. The ratio goes from 0.156 to 0.366 for max-sat when
the number of recruited vehicles goes from 50 to 200. Yet
when the number of vehicles is larger than 200, the trend
of increment on the coverage ratio decreases, similar to the
impact on the cost of weight.

2) Detour Ratio τ : Vehicles are allowed to travel extra paths
to the crowdsourced sensing tasks. The detour ratio of a path
l(o, d) is calculated as dividing the length of l(o, d) by the
length of the shortest path between o and d .

Fig. 7 (a) and Fig. 7 (b) show that as the detour ratio
increases, the weight of benefit and coverage ratio for each
algorithm increase. A larger detour ratio means more options
of road segments could be chosen when finding feasible paths,
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Fig. 7. The effect of detour ratio on the weight of benefit and coverage ratio.

Fig. 8. The effect of penalty factor on the weight of benefit and coverage
ratio.

hence road segments with larger weight of cost could be added
to the final path set. max-sat has the best performance both
on the weight of benefit and coverage ratio. When the detour
ratio goes from 0.10 to 0.50, the weight of benefit increases
from 417821 to 476867, and the coverage ratio increases
from 0.3326 to 0.3761. The other compared algorithms have
similar performance. Their weight of benefit goes from around
41000 to around 46000, and their coverage ratio increases from
around 0.330 to 0.369.

3) Number of Feasible Paths K : For recruited vehicles,
more optional paths mean more choices for the path selec-
tion process. We also varied the number of feasible paths,
K , to study its impact on the performance. Fig. 8 (a) and
Fig. 8 (b) show that the weight of benefit and coverage ratio
for all algorithms increase with the number of feasible paths.
When K increases from 5 to 20, the weight of benefit increases
from around 42000 to around 46000, and the coverage ratio
increases from 0.345 to 0.374 for the hillclimb, SA and genetic
algorithms. But when the number of feasible paths for a
route is bigger than 13, the increment on the two metrics is
relatively small. One reason is that the similarity and detour
thresholds are added to select the feasible paths, and there
might not be any paths added to the candidate set of feasible
paths even when K increases to a relatively large number.
Furthermore, the max-sat algorithm has the best performance,
which achieves a weight of benefit at 478948 and a coverage
ratio of 0.3806. The AStar algorithm extends the feasible
path in a probabilistic way, so K is not applicable for the
performance analysis.

4) Similarity Constraint and Penalty Factor: In the pro-
posed framework, diversified feasible paths are preferred in the
final path selection process, and we use two parameters to add

Fig. 9. The effect of the number of feasible paths on the weight of benefit
and coverage ratio.

Fig. 10. The effect of similarity constraint and cutoff time on the weight of
benefit and coverage ratio.

this diversity. The first parameter is the similarity constraint
h̄ that prunes out similar paths under the threshold, and the
second parameter is the penalty factor δ that adds the cost
of weight to the already selected paths when calculating the
shortest paths.

Fig. 9 (a) and Fig. 9 (b) show that the weight of benefit
and coverage ratio increase as the similarity threshold goes
up. This is because the larger the threshold, the more feasible
paths could be added to the candidate set, which adds diversity
to the result set. But when h̄ is relatively large, e.g. 0.8, the
performance goes down for the max-sat algorithm. The weight
of benefit goes down to 463134 and the coverage ratio goes
down to 0.3681. This is because too many similar paths are
added to the path set, and this would inversely harm the overall
performance.

By setting a penalty factor δ, we increase the traffic cost
of each edge on the optimized path when searching the next
optimized path. So the penalty factor has similar impact as the
similarity constraint, where larger penalty factor means more
diversified paths to choose from. The weight of benefit and
coverage ratio becomes larger as the penalty factor increases,
as illustrated at Fig. 10 (a) and Fig. 10 (b).

5) Cutoff Time: The MWSP problem is NP-complete and
we adopt some local search algorithms to solve it. So we also
control the cutoff time to study its impact on the algorithms.
As illustrated in Fig. 11 (a) and Fig. 11 (b) the cutoff time is
set as {10, 20, 50, 100, 150, 200, 250, 300}. For the S A and
genetic algorithm, the weight of benefit increases as the cutoff
time increases. This is because more running time is allowed
for the searching. But for the hillclimb algorithm, the program
terminates before the cutoff time, so the performance is not
improved even when more running time is allowed. For the
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Fig. 11. The effect of similarity constraint and cutoff time on the weight of
benefit and coverage ratio.

max-sat algorithm, 10 seconds running time is enough to have
a weight of benefit at 465409, though the value would increase
to 466064 when the cutoff time is set larger than 250 seconds.
The coverage ratio is the ratio of sensed road segments over
all the road segments. All the algorithms would select similar
number of road segments or paths into the final result set,
so the ratio is relatively stable regarding the cutoff time.

VI. CONCLUSION

Recently there is a trend to combine the vehicular sensing
and outsourcing technologies to solve the large-scale urban
road sensing problem, which leverages sensor nodes as an
effective and affordable solution for large-scale and fine-
grained sensing. In this paper, we have presented a crowd-
sourced vehicular sensing framework that consists of three
steps: vehicle recruitment, candidate path calculation, and
path computing. We defined the MWSP problem in vehicular
crowdsensing scenario and formulated it as a maximal satis-
fiability problem. A least-interrupted urban sensing strategy
was adopted and heuristic methods were used to scale down
the problem and speed up the solving process for large-
scale crowdsensing in urban road networks. Experiments based
on real-world road-network and historical origin-destination
datasets verify the effectiveness of the proposed methods. The
results show that the proposed algorithm outperforms other
solutions and it can solve the vehicular crowdsensing problem
effectively and efficiently.

For the future work, we will further verify and improve
our algorithm based on more real-world datasets and con-
sider factors such as traffic state, time selection and cost of
transportation in the crowdsensing process. We will also study
the incentive mechanisms of crowdsourced vehicles in urban
sensing. Only when vehicles or drivers have the willingness to
participate in the sensing, would the vehicular crowdsensing
platform be successful and gather enough data for the system
of smart city.
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