
sensors

Article

Fog-Based Two-Phase Event Monitoring and Data
Gathering in Vehicular Sensor Networks

Yongxuan Lai 1 ID , Fan Yang 2, Jinsong Su 1,*, Qifeng Zhou 2, Tian Wang 3, Lu Zhang 1 and Yifan Xu 1

1 School of Software, Xiamen University, 422 Siming South Road, Siming District, Xiamen 360000, China;
laiyx@xmu.edu.cn (Y.L.); xmuzhanglu@stu.xmu.edu.cn (L.Z.); xuyifan@stu.xmu.edu.cn (Y.X.)

2 Department of Automation, Xiamen University, 422 Siming South Road, Siming District, Xiamen 360000, China;
yang@xmu.edu.cn (F.Y.); zhouqf@xmu.edu.cn (Q.Z.)

3 College of Computer Science and Technology, Huaqiao University, Xiamen 360000, China;
wangtian@hqu.edu.cn

* Correspondence: jssu@xmu.edu.cn; Tel.: +86-592-258-0566; Fax: +86-592-258-0500

Received: 10 October 2017; Accepted: 26 December 2017; Published: 29 December 2017

Abstract: Vehicular nodes are equipped with more and more sensing units, and a large amount of
sensing data is generated. Recently, more and more research considers cooperative urban sensing
as the heart of intelligent and green city traffic management. The key components of the platform
will be a combination of a pervasive vehicular sensing system, as well as a central control and
analysis system, where data-gathering is a fundamental component. However, the data-gathering
and monitoring are also challenging issues in vehicular sensor networks because of the large amount
of data and the dynamic nature of the network. In this paper, we propose an efficient continuous
event-monitoring and data-gathering framework based on fog nodes in vehicular sensor networks.
A fog-based two-level threshold strategy is adopted to suppress unnecessary data upload and
transmissions. In the monitoring phase, nodes sense the environment in low cost sensing mode
and generate sensed data. When the probability of the event is high and exceeds some threshold,
nodes transfer to the event-checking phase, and some nodes would be selected to transfer to the
deep sensing mode to generate more accurate data of the environment. Furthermore, it adaptively
adjusts the threshold to upload a suitable amount of data for decision making, while at the same
time suppressing unnecessary message transmissions. Simulation results showed that the proposed
scheme could reduce more than 84 percent of the data transmissions compared with other existing
algorithms, while it detects the events and gathers the event data.

Keywords: event detection; data-gathering; mobile sensing; VANETs

1. Introduction

With the development of vehicular and communication technologies, there emerges a new
technology called vehicular ad hoc networks (VANETs) that integrates the capabilities of new generation
wireless networks to vehicles [1–3]. The IEEE 802 committee defined wireless communication standard
IEEE 802.11p [4], which serves specifically vehicle to infrastructure (V2I) communication. It can realize a
fast V2I wireless communication connection in the urban road environment and ensure transportation
safety and communication reliability for moving vehicles. The Federal Communications Commission
(FCC) has allocated 75 MHz of bandwidth, which operates at 5.9 GHz for short range communications.
Vehicles communicate with other vehicles, directly forming vehicle to vehicle communication (V2V),
or communicate with fixed equipment next to the road, referred to as road side unit (RSU), forming
vehicle to infrastructure communication (V2I). VANETs enable the concept of smart cars and intelligent
transportation systems (ITS), in which information and communication technologies are applied in
the fields of road transportation, traffic management and mobility management. The major goals of

Sensors 2018, 18, 82; doi:10.3390/s18010082 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2883-0781
http://dx.doi.org/10.3390/s18010082
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 82 2 of 23

these activities are to increase road safety and transportation efficiency, as well as to reduce the impact
of transportation on the environment. Example VANET applications include intersection collision
avoidance, electronic brake lights, platooning and traffic information systems [5].

One key and challenging issue in VANETs is vehicular sensing and data-gathering [6–8].
Vehicular nodes are equipped with more and more sensing units, and large amounts of sensing data such
as GPS locations, speeds and video clips are generated [9]. These data are shared or uploaded as input
for applications aiming at more intelligent transportation, emergency response and reducing pollution
and fuel consumption. In other words, cooperative urban sensing is at the heart of the intelligent and
green city traffic management. The key components of the platform will be a combination of a pervasive
vehicular sensing system, as well as a central control and analysis system, where data-gathering is a
fundamental component that bridges the two systems. However, data-gathering and event-monitoring are
also challenging issues in VANETs. VANETs differ from other mobile ad hoc networks (MANET) by their
own characteristics. The network scale could be large, and the nodes (vehicles) have high computational
ability and no power constraints compared to traditional sensor nodes powered by battery. As indicated
by a report from Intel [10], the vehicle is evolving into a supercomputer on wheels. Furthermore, nodes
are limited to road topology while moving, and the network usually suffers rapid topology and density
changes under various road conditions and high moving speed. The communications are usually
fragmented and intermittent-connected.

With the rapid development of embedded hardware and communication technologies, there emerges
a new kind of node called fog nodes [2,11,12], which are deployed at the edge of networks and with
the support of location, distribution, scalability, density of devices and mobility. The concept of fog
computing extends the traditional cloud computing paradigm to the edge of VANETs. For example,
Intel’s Next Unit of Computing (NUC) is a small-form-factor computer, whose motherboard measures
4 × 4 inches and could be integrated with the RSUs. Therefore, one potential solution to efficient sensing
and data-gathering in VANETs is through fog nodes. The fog nodes, e.g., RSUs, are able to provide
computation, storage and networking services between the vehicular nodes and ITS central servers,
which brings about the opportunity for optimizing the data-gathering and event-detection processes
in VANETs. The challenge of fog computing lies in that the nodes are ubiquitously connected at the
edge of the network, and there should be a careful design of scheduling and cooperation schemes
among the fog nodes, as well as collaboration between vehicular nodes and the cloud [13]. For the event
detection applications, there is a large amount of vehicular sensed data, and they are characterized as
continuous generation. The sensed data should be filtered and preprocessed before being shared or
uploaded [14]. Cooperative event-driven data-filtering technologies tailored to the VANET environment
are highly needed.

In this paper, we propose an efficient continuous event-monitoring and data-gathering framework
called TPEG (Two-Phase Event-monitoring and data-Gathering) based on fog nodes in VANETs.
TPEG would initiate an event-checking procedure to evaluate the received data. More detailed data
would be uploaded to the base station when it considers this necessary, so the scheme suppresses
unnecessary message transmission as much as possible while still detecting most of the events.
There are two phases in the proposed scheme. In the monitoring phase, nodes sense the environment
in low cost sensing mode and generate sensed data. A local fog-based two-level threshold strategy
is adopted to suppress unnecessary data upload and transmission. When the probability of event is
higher than the threshold, nodes transfer to event-checking phase, and some nodes would be selected
to transfer to deep sensing to sense more accurate data of the environment. In the data upload phase,
detailed data are uploaded to the ITS server for the final event decision. TPEG adaptively adjusts the
threshold to upload a suitable amount of data for decision making, while at the same time suppressing
unnecessary message transmissions. The main contributions of this paper are as follows:

1. By integrating the concept of fog nodes and VANETs, we propose an efficient scheme to efficiently
monitor the events and gather data based on VANETs. The sensing operators are roughly classified
into the low cost sensing (LCS) mode and the high cost sensing (HCS) mode, and by taking full

Sensors 2018, 18, 82 3 of 23

advantage of the fog nodes, our scheme strikes a good balance between these two modes to
achieve better efficiency;

2. The “two-level threshold adjustment” (2LTA) is proposed to avoid unnecessary event-checking
and data upload. At the node level, only readings with a larger weight are sent to the RSU for
further processing. The RSU then checks the confidence/probability of an event and initiates an
event-checking procedure when the confidence exceeds a threshold. No event-checking procedure
is needed if the confidence is within the range of thresholds;

3. Extensive experiments were conducted to demonstrate the effectiveness of the proposed algorithm.
TPEG reduces more than 84% of data transmissions compared to other algorithms, while at the
same time, it detects the events and gathers the event data.

The rest of the paper is structured as follows: Section 2 describes the related work; Section 3
introduces some preliminaries and defines the network model and metrics; Section 4 presents the
detailed description of the TPEG algorithm, including monitoring, event-checking, data upload and
threshold adjustment; Section 5 describes the environmental setup and analyzes the simulation results;
finally, Section 6 concludes the paper.

2. Related Work

Vehicles could be viewed as powerful mobile sensors. In this section, we briefly survey some
related works on data/event gathering and fog computing in VANETs.

2.1. Event Monitoring and Data Gathering

Lee et al. [15] proposed the MobEyes system for proactive urban monitoring. The system exploits
the vehicle mobility to opportunistically diffuse concise summaries of the sensed data, and it harvests
these summaries and builds a low-cost distributed index of the stored data to support various
applications. Hull et al. [16] proposed a data management system called CarTelfor querying and
collecting data from mobile vehicles, which enables the application development with the data collected.
Palazzi et al. [17] proposed a delay-bounded vehicular data-gathering approach, which exploits
the time interval to harvest data from the region of interest satisfying specified time constraints
and properly alternates the data muling and multi-hop forwarding strategies. Yet, the solution has
to be integrated with a time-stable geocast protocol for the query propagation and result collection.
They depend on multi-hop in-network communications and “store-carry-forward” opportunistic
communications, which encounter larger delay and communication cost.

Besides minimizing the delay from source to destination, event-monitoring and data-gathering
protocols also try to minimize the consumed resources while ensuring that the collected information
meets certain maximum delay requirements. Delot et al. [18] proposed a pull-based data-gathering
strategy called GeoVanet. It adopts a distributed hash table based model to identify a fixed geographical
location where a mailbox is dedicated to the query, so users are able to send queries to a set of cars
and find the desired information in a bounded time. PÅĆaczek [19] introduced a method of selective
data collection for traffic control applications. The underlying idea is to detect the necessity of data
transfers on the basis of the uncertainty determination of the traffic control decisions, and sensor data
are transmitted from vehicles to the control node only at selected time moments. Lindgren et al. [20]
presented the two protocols called D-Greedy and D-MinCost for traffic-monitoring in vehicular
networks. They defined two operation modes, multi-hop forwarding (MF) mode and the DTN (Delay
Tolerant Network) mode (DM). During MF mode, messages are forwarded using Greedy-DTN through
the shortest path to the destination, while in DM mode, messages are only forwarded at intersections
to keep them inside the shortest path when the current carrier moves away.

As the volume of sensed data might be large, there is also some research on reducing the volume
of sensed data and the cost of gathering them. Zekri et al. [21] proposed an event-exchanging and
data-gathering scheme based on the Flajolet–Martin sketches in vehicular networks. The sketches

Sensors 2018, 18, 82 4 of 23

could be exchanged without loss of information and be duplicate insensitive, so it allows manipulating
the same physical repository for all vehicles. Li et al. [22] proposed a cooperative storage solution
in vehicular sensor networks for mobile surveillance. Nodes first capture images from links/streets
and then eliminate redundant data by exchanging image tags between vehicles, and it also includes
a distributed storage balancing mechanism to offload data from heavy-load nodes to light-load
nodes. Recently, the compressive sensing (CS) technique was also used for data-gathering in VANETs.
Xie et al. [23] proposed the CS-based sharing mechanism to enable efficient decentralized context
sharing in vehicular networks. It exploits message aggregation and the sparsity of events to reduce
the total number of message exchanges. The idea of data aggregation and compressive sensing is
orthogonal to the proposed TPEG mechanism, and they could be embedded in our scheme to reduce
the cost of message transmissions further.

The proposed scheme differs from the above-mentioned schemes in the mode of sensing for
event-monitoring. When nodes work in LCS mode, only the sketched data need to be uploaded to
the road side unit for event-monitoring. TPEG takes full advantage of the computing and storage
resources at the fog nodes to effectively filter unrelated and redundant sensed data to reduce the
overall message transmissions.

2.2. VANETs and Fog Computing

Within the concept of edge computing and fog computing, more and more fog nodes would be
deployed at the edge of networks for various applications. Satyanarayanan et al. [24] proposed a
mobility-enhanced small-scale cloud data center that is located at the edge of the Internet. A cloudlet
is a trusted, resource-rich computer or cluster of computers that is well-connected to the Internet and
available for use by nearby mobile devices. Sharma et al. [25] proposed a framework for coordinated
processing between edge and cloud computing/processing by integrating the advantages from
both platforms. The proposed framework can exploit the network-wide knowledge and historical
information available at the cloud center to guide edge computing units towards satisfying various
performance requirements of heterogeneous wireless IoT networks. Similarly, Tang et al. [26] proposed
a hierarchical distributed fog computing architecture for big data analysis in smart cities. It distributes
intelligence at the edge of a layered fog computing network. Eltoweissy et al. [27] for the first time
coined the term of autonomous vehicular clouds (AVC), where a group of largely autonomous vehicles
whose corporate computing, sensing, communication and physical resources can be coordinated and
dynamically allocated to authorized users. Hussain et al. [28] took a step forward to broaden the idea
of VANET clouds by defining a communication paradigm for VANET clouds and then put forth the
potential cloud services from the VANET standpoint. Mershad and Artail [29] proposed a system
where cloud computing services are hosted by vehicles that have sufficient resources to act as mobile
cloud servers and vehicles could search the mobile cloud servers that are moving nearby and discover
their services and resources.

The concept of VANET cloud, indeed, is highly related to the fog computing, which extends
the traditional cloud computing paradigm to the edge. Edge nodes are able to provide computation,
storage and networking services between the end nodes and traditional clouds. Fog reduces service
latency and improves QoS, resulting in superior user experience.

Bonomi et al. [11] defined the characteristics of fog computing and its role in the Internet of
Things. They emphasized the fact that fog computing brings new elements to the realm of the
Internet of Things through a reduction of service latency and improvement of QoS (quality of
service). Vaquero et al. [30] gave a border and integrated view of the fog, and they argued that
the fog will dramatically shift many current practices at almost every layer of the IT stack, like app
development, network traffic management, network/service provision, accounting, app collaboration
mechanisms, etc. Stojmenovic et al. [2] elaborated previous scenarios and further expanded this
concept on a series of real scenarios, such as the smart grid, smart traffic lights in vehicular networks
and software-defined networks. More recently, Kai et al. [31] gave a survey about some opportunities

Sensors 2018, 18, 82 5 of 23

and challenges related to the context of fog computing in VANETs; and Zeng et al. [12] proposed
a three-layer framework based on a fog structure for uploading data from sensor readings to the
cloud. Static sensor nodes can forward their data to their nearby mobile fog nodes, so that the
data transmission latency to the cloud center can be greatly reduced. Hao et al. [13] gave a detailed
description of fog computing and proposed a flexible software architecture to incorporate different
design choices and user-specified polices. The challenge of fog computing lies in that the nodes are
ubiquitously connected at the edge of network, and there should be a careful design of scheduling
and cooperation schemes among the fog nodes, as well as collaboration between vehicular nodes
and the cloud. Aazam et al. [14] presented smart gateway-based communication, along with fog
computing, for the purpose of smart communication and helping lessen the burden on the cloud.
Recently, Wang et al. [32] studied the cascade shifting flow (CSF) problem and examined the wireless
services provided to fast-moving users on trains based on a fog computing structure. They solved the
problem by limiting the maximum shifting hops of the communication flows, thereby minimizing
the maximum delay while maximizing the throughput. Wang et al. [33] discussed trajectory privacy
preservation issues based on the fog structure. The main idea is to store partial important data with
the dummy anonymity technology to ensure physical control, and mobile users’ partial important
information can be stored on a fog server to ensure better management.

3. Preliminaries

3.1. Network and Data Gathering

We assume each vehicle, vi, monitors the road condition and surrounding environment through
periodical sensing (Figure 1). It generates pieces of data and sends them to the roadside units (RSUs)
through one-hop vehicle to infrastructure (V2I) or multi-hop vehicle to vehicle (V2V) transmissions.
RSUs are fixed infrastructure on the roadside, which also serve as the fog nodes to provide computation,
storage and networking services between the vehicular nodes and ITS (intelligent transportation
system) clouds. For example, Intel’s Next Unit of Computing (NUC) is a small-form-factor computer,
whose motherboard measures 4 × 4 inches and could be integrated with the RSUs. An RSU would
initiate an event-checking procedure to evaluate the received data, which might lead to the upload of
more detailed data to the base station when it considers this necessary. The detailed data are uploaded
within a constrained time delay to the central ITS server. The server, due to its powerful computational
resources and global knowledge of the road and the network, would then make the final decisions
based on further data analysis.

For an event-based data-gathering process, there are three kinds of tasks:

• Continuous monitoring: the network is monitored through low-cost collection of sensing data so
that ITS is informed when an event occurs. This task is represented by the event-checking procedure;

• Data gathering: more detailed data are gathered to the ITS cloud, and the data uploaded are
time-limited and delay-constrained;

• Event verification: the ITS system verifies whether an event occurs and gives feedbacks to
the VANETs.

Furthermore, we assume the sensing operators equipped in vehicular nodes are roughly classified
into two types/modes: the low cost sensing (LCS) mode and the high cost sensing (HCS) mode.
The former requires much less sensing and calculation power than the latter. Each piece of sensed data
is denoted by a tuple d(id, v, α, ts, mode), where id is a unique identification of the sensing node, v is
the sensed reading, α indicates the confidence of the true reading, ts is the timestamp and mode is the
mode of sensing, which is either LCS or HCS. The HCS mode is also called deep sensing, which would
generate more accurate and detailed sensing data, e.g., through more accurate and powerful sensing
devises or through a higher sensing rate.

Sensors 2018, 18, 82 6 of 23

Vehicle RSU ITS Central ServerEvent

Figure 1. Illustration of a vehicular sensing system. Nodes generate pieces of data and send them to
fog nodes (RSUs). RSUs provide computation, storage and networking services between the vehicular
nodes and ITS cloud.

3.2. Event and Weight of Data

The event of interest under monitoring is denoted as e, and the vehicular nodes near the event
would sense the event and generate some data. There is a mapping of correlation between a data
reading d and event e. The correlation is indicated by function h̄(d, e):

h̄(d, e) = {p(e), α}, p(e) ∈ {1,−1}, α ∈ [0, 1] (1)

p(e) is the prediction of the event, where one denotes the event occurs and −1 denotes otherwise;
α ∈ [0, 1] is the confidence of the prediction. In this research, we aim to provide a general-purposed
event-monitoring and data-gathering scheme that is to decrease the cost while at the same time
achieving an acceptable detection rate. While there are different types of events, e.g., polluted air,
broken road, and traffic accident, which could be detected through various vehicle-equipped sensing
devices such as camera, oxygen sensor, variable reluctance sensor, etc., here, we assume machine
learning algorithms are run at the vehicular and fog nodes to predict the occurrence of those events
through local data. An example about the event of pavement surface deformation is given as follows:

Example 1. Suppose the event e is a pavement surface deformation at location L. When Vehicle A travels
though L, it senses a data reading d1 and makes a prediction based on that reading: e happens, and the confidence
is 0.5. The event systems would need more predictions like A to confirm whether e happens. Therefore, if other
vehicles such as B, C, D, E also predict that e happens with large confidence, i.e., pavement surface deforms at
location L with a confidence larger than 0.4, then the event detection system at fog nodes would predicate the
event to be true.

Usually, the algorithms, e.g., the logistic regression [34], would indicate the event to be true or
false by giving a confidence. Additionally, the weight of d on event e could be further defined as:

w(d, e) = p(e)× α (2)

The weight is highly related to the sensing operator and the monitoring applications. If the weight
of data, e.g., w(d, e) is close to one, e is likely to occur; if it is close to −1, e is unlikely to occur; if it
is close to zero, the occurrence of the event is unclear due to a lack of confidence. Given the type of
sensing operator and data, the weight of data is used as the main input for the event-monitoring and

Sensors 2018, 18, 82 7 of 23

detection. Furthermore, we assume the data gathered in HCS mode have a much larger weight than
that in LCS mode:

w(d1, e) << w(d2, e), d1.mode = LCS, d2.mode = HCS (3)

In other words, data generated through HCS mode contribute more to the ITS system to determine
whether an event occurs, yet the data generated in HCS mode have also == larger sizes and incur larger
sensing and gathering cost. The proposed TPEG scheme is to continuously monitor and detect events
in VANETs, while at the same time reducing unnecessary high cost sensing activities, e.g., working in
HCS mode, and message transmissions as much as possible.

4. TPEG Framework

4.1. Overview

Figure 2 depicts the overall phases of the TPEG scheme. There are five steps as follows:

1. Data monitoring: Nodes work in LCS mode, and they sense the environment and generate the
data. The data have a relatively low generation rate and confidence and are uploaded to the RSU
through V2I or V2V communications.

2. Event checking: RSU checks the confidence/probability of an event, and it initiates an
event-checking procedure when the event probability is high. When the confidence is low, nodes
just keep silent, and no event-checking procedures are needed.

3. Deep sensing: Some nodes are selected to transfer to “deep sensing”, where they work in HCS
mode and sense more accurate data about the environment.

4. Data upload: The data generated in HCS mode are uploaded to the RSU for final event verification.
Data could be uploaded directly, forwarded to neighboring nodes or wait until encountering a
new RSU. Nodes would adaptively decide their strategy for data upload based on whether they
are within the coverage of an RSU or encountered nodes.

5. Event decision: The ITS cloud process the gathered data and make a decision about the events.
Some data are archived on the cloud, and some feedback is sent back to the RSUs.

Node A:
 Monitoring

RSU:
Event Checking

Node B:
Deep Sensing

Node C:
Data Upload

RSU:
Event Decision

Figure 2. Phases of TPEG.

The monitoring procedure in Step 1 runs as a background process with low cost, while still being
able to alert the possible events. TPEG would upload the data of the event at the deep sensing step,
while suppressing the message communications at the monitoring step. It is worth being noted that as
nodes are moving along the road in VANETs, TPEG is a distributed framework where the monitoring
and deep sensing procedures might execute at different vehicular nodes or at different RSUs.

In the following subsections, we present the detailed description of the main steps of the scheme
and algorithm.

4.2. Low Cost Monitoring

For an event-monitoring and detection application, each node senses the data according to the
monitoring command when it moves within the area of RSU. Each node works in LCS mode and

Sensors 2018, 18, 82 8 of 23

generates data. The weight of data d on event e is w(d, e), and d is reported to the RSU if its weight is
larger than a predefined threshold:

w(d, e) ≥ τ0 (4)

As mentioned in Section 3, we assume the weight of data to be mainly decided by their
corresponding cost, where data with lower cost have smaller weight on detecting an event. Example 2
shows low cost monitoring of the pavement surface deformation example:

Example 2. By default, vehicles takes photos of the road at 300×300 px every 30 s and make a prediction and
determine the confidence about the event of pavement surface deformation at different positions. Lower resolution
photos incur less sensing and transmission cost, yet are less effective for the event detection compared with those of
higher resolution. These low level photos might trigger the gathering of detailed data, i.e., 1080 ×1080 px per 5 s,
for further analysis by the image-understanding systems [35].

4.3. Event Checking and Node Selection

Vehicular nodes send their readings to the RSU, so the RSU is able to calculate the weight of the
received readings. For a set of readings D, the weight is defined as w(D):

w(D) =
∑d∈D w(d)
|D| (5)

Given event e, the weight of data w(D, e) is denoted as w(D) for simplicity. If the weight for a
specific event within the time window is greater than threshold τ1:

w(D) ≥ τ1 (6)

the RSU would broadcast an event-checking procedure to all nodes within its covered area. Here,
we adopt a threshold-based event-checking strategy. If a threshold is broken, this means an event
is likely to occur on the road, and further checking is required. Threshold τ0 and τ1 are two key
parameters for our algorithm, and they strike a balance between the number of uploaded readings
and the cost of event-checking procedures. In Section 4.5, we will further discuss the setting and
adjustment of the parameters.

When an RSU initiates an event-checking procedure, it periodically broadcasts an “event-checking
command” within its covered area, where some nodes passing by would transfer to HCS mode.
However, working in HCS mode is expensive. It needs more computing and energy resources to sense
more accurate data and also costs more in transmissions to upload the data. Therefore, it is crucial for
TPEG to selectively pick up a part of the nodes passing-by to work on this mode.

A node creates a timer when it receives an event-checking command from an RSU for the first
time. When the timer is fired, the node transfers to HCS mode. The timer is denoted tm(β), where β is
the delayed interval and defined as follows:

β =

{
BI ∗ t̃

t̃−t
, t ≤ t̃

BI ∗ δ, t > t̃
BI < t̃, δ ∈ (0, 1) (7)

where BI denotes the time interval of the broadcasting of event-checking messages at RSU, t̃ is the
average duration of a node moving through the RSU coverage area, t is the elapsed time when a
node enters the coverage area and δ is a random number. The average duration t̃ could be derived
by the historical duration of nodes passing by a specific RSU. Nodes enter the RSU covered area
in sequential order, and the node that newly enter the area would have the smallest delay interval
according to Equation (7). It would have its timer tm fired and then accept the command of working
in HCS mode with less delay. Furthermore, the broadcasting interval BI is set to be smaller than the
average pass duration t̃, so when a node goes through the RSU coverage area, it would receive at

Sensors 2018, 18, 82 9 of 23

least one broadcasting message. In extreme cases when the elapsed time is greater than t̃, e.g., traffic
jam, the delay β would be randomly set, and nodes are randomly selected to work in HCS mode.
The interval of the timer is set according to BI, and it could be tuned to make the timer smaller to avoid
the case that vehicles leave the coverage area of an RSU without vehicles in HCS mode. Moreover,
we are assuming a urban scenario where vehicles do no travel so fast.

If a node accepts the event-checking command, it would transfer to HCS mode and send an
accept-HCS message to the RSU, where other nodes overhearing this message would cancel their
timers. Therefore, only a small part of the nodes would join the event-checking procedure, and some
nodes would still work in LCS mode. For the RSU, it periodically broadcasts the event-checking
command if it does not receive an accept-HCS command from passing-by nodes. When it receives the
accept-HCS message, it would broadcast an on-checking command, and other nodes that receive this
message would cancel their timers for accepting the event-checking command.

4.4. Adaptive Data Upload

Nodes that accept the event-checking command would transfer to deep sensing for a period of
time, and a relatively larger size of data would be generated in HCS mode. The data are uploaded to
the RSUs and then routed to the ITS system for event analysis as RSUs are inter-connected through
wired networks or the Internet.

A node would schedule its data for upload when it is within the coverage of an RSU. When it
moves out of the RSU coverage, it would delay the data upload until the next opportunity of entering
an RSU, or forward the data to an encountered vehicular node. For the ease of data upload and
transmission, a piece of HCS data would be split into small segments. For a data segment, e.g., ds,
there are three cases for it to be uploaded to the ITS system:

1. When the node is within the coverage area of RSU, ds is directly scheduled for uploading, which is
denoted as:

method(ds) = Upload, if rsu(s) = true; (8)

where s is the node that holds ds and rsu(s) returns true if node s is within the coverage of an RSU.
2. When there is no RSU coverage or node-to-node connections, ds is stored locally, and the upload

is suppressed, which is denoted as:

method(ds) = Delay, if rsu(s) = f alse; & neighbor(s) = φ (9)

where neighbor(s) denotes the set of neighbors of node s.
3. When a node moves out of the RSU coverage and encounters a neighboring node, it would decide

its forwarding strategy based on the current node s and the encountered node s′. ds might be
forwarded to s′ or be stored at s and waits for other transmission opportunities. This is denoted as:

method(ds) =

{
Forward, if f w(s, s′) = true & rsu(s) = f alse
Suppress, if f w(s, s′) = f alse & rsu(s) = f alse

(10)

where f w(s, s′) denotes the feasibility of forwarding data from node s to s′. f w(s, s′) returns true if
the data are forwarded to s′, and node s′ would go into an RSU coverage area and upload the data
before a predefined deadline. In more detail, f w(s, s′) is true if it satisfies the following condition:

et(s′) + ut(ds) ≤ TC < et(s), ut(ds) < cd(s, s′) (11)

Here, TC is the time constraint of data to be uploaded to the ITS system, et(s′) is the expected time
interval for node s′ to enter an RSU coverage area and ut(ds) is the time duration of data uploading,

Sensors 2018, 18, 82 10 of 23

which could be easily calculated by dividing the data size by the bandwidth: ut(ds) = |ds|
bw . cd(s, s′)

is the expected contact duration of node s and s′.

Here, we borrow the idea of “store-carry-forward” in delay-tolerant networks [36] for the data
uploading and forwarding. When a node, e.g., s′ receives data from another node, s′ is responsible for
the data uploading. s′ might upload the data when it is within an RSU’s coverage, or forward it to
another node based on Equation (11). The calculation is mainly based on the expected time interval to
reenter an RSU coverage area, as well as the expected contact duration between two encountered nodes,
which are learned from the network meta-data and historical data. Each node would predict its time
left to the next RSU (et(s)) based on their routes or historical trajectories, as well as contact histories
with RSUs. The expected contact duration (cd(s, s′)) between two encountered nodes could also be
estimated based on their direction, speed and trajectory records. These metadata and parameters are
common input for the routing protocols for VANETs. Readers could refer to [2] for further discussions.

4.5. Threshold Adjustment

When an RSU initiates an event-checking procedure, more detailed and accurate sensed data
would be uploaded and gathered. These data are processed by the central ITS system, and the final
decision about the events would be made either by more intelligent analysis or human intervention.
There are two aspects where TPEG can reduce unnecessary message transmissions:

• Events are assumed to be uncommon phenomenon. When events do not occur, the network
should avoid unnecessary event-checking procedures.

• Unlike some monitoring and detection scenarios where events are transient, events at VANETs
would usually last for a period of time. Therefore, when an event occurs, it is important for nodes
not to be triggered by HCS mode and not to upload the redundant data to the RSU.

The pavement surface deformation example belongs to the permanent monitoring scenarios
because it would need some time (days or weeks) for road administrations to repair them. Car accidents
such as slight car crashes belong to the transient monitoring case. Usually, the accident would be
handled in several minutes. TPEG adopts a mechanism called “two-level threshold adjustment” (2LTA)
to avoid unnecessary event-checking and data upload. 2LTA adaptively adjusts the thresholds at the
node and the RSU levels to suppress unnecessary sensing and data upload operations, while at the
same time detecting as many events as possible.

4.5.1. Node Level Adjustment

At the node level, ordinary nodes send monitoring readings to RSUs so that an event-checking
procedure would be triggered. Readings with a weight larger than τo are sent to the RSU for further
processing. Each node moving through the RSU coverage area would send a histogram-based sketch
about its monitored readings to the RSU. A sketch sk is composed of tuples in the form:

{< (h1, h2], n1 >, ..,< (hi, hi+1], ni >, ..,< (hk−1, hk], nk >} (12)

where (hi, hi+1] is the range of weight and ni is the number of readings whose weight is within the
range. Sketches could be stored in any histogram like data structures. Suppose RSU expects to receive
m readings for the event-checking decision, then the threshold τo is set as follows:

τ0 = argminx f (x) = { ∑
sk∈Φ

η(sk, x) ≥ m}, x ∈ {h0, h1, .., hk−1} (13)

where η(sk, x) is the number of readings in sketch sk whose weight is larger than x, Φ is the set of
sketches received at the RSU during the average duration of a node moving through the RSU. The node
receiving the update message from the RSU would just reset the threshold τ0.

Sensors 2018, 18, 82 11 of 23

4.5.2. RSU Level Adjustment

At the RSU level, τ1 is adjusted according to the event detection result (Algorithm 2, Lines 14–16).
If the event is verified to be false (false positive events) after an event-checking procedure, TPEG
would adjust τ1 to be a little larger:

τ1 = τ1 × (1 + ∆) (14)

where ∆ is a predefined increment factor, e.g., ∆ = 0.05 by default. Yet, if there are several events
that are verified to be false, τ1 might be adjusted to a larger value, and triggering the event-checking
procedure would be hard. To avoid this drawback, τ1 would also be set a little smaller with the time of
epochs passed by:

τ1 = τ1 × (1− ∆× tu
TU

) (15)

where tu is the time interval since the latest τ1 adjustment and TU is the unit of time for the threshold
adjustment, which is predefined.

When the cloud receives the sensing data from the RSUs, it would store the data, check if the
event happened and send the checking results to the RSU. If an event is verified to be true after the
event-checking procedure, it is registered at the ITS system, and actions would be taken to handle
the event. For example, events such as “bad road condition” or “road blocks” would be handled
by the municipal administration after a period of time. Yet, during this period of time, the RSU
would decrease the chance of initiating event-checking procedures. It periodically broadcasts an
event-occur message to alert vehicular nodes who newly enter its coverage area, and nodes that receive
the event-occur message would keep working in LCS mode to save redundant sensing operations and
message transmissions. When events are handled, they are removed from the ITS system, and the
RSU would broadcast an event-removed message to notify ordinary nodes to transfer back to normal
monitoring and event detection tasks.

4.6. Algorithm Descriptions

Algorithms 1 and 2 are the pseudocodes of the message handling at ordinary nodes, RSUs
and the cloud, which illustrate the procedures of the TPEG scheme. For an event-monitoring and
detection application, each ordinary node works in LCS mode and generates data (Algorithm 1, Line 1).
The weight of data d on event e is w(d, e), and d will be reported to the RSU if its weight is larger
than a predefined threshold τ0 (Algorithm 1, Lines 2–3): When the RSU receives the LCS data from
ordinary nodes, it stores the data and calculates the weight of the event based on the accumulated
dataset (Algorithm 2, Lines 2–3). If the weight of the event exceeds the threshold τ1, the RSU initiates
an event-checking procedure (Algorithm 2: Lines 4–5). It broadcasts the event-checking command
within its coverage and waits to receive the HCS messages (Algorithm 2, Lines 6–7). The command is
then received by ordinary nodes. An ordinary node would create a timer tm(β) when it receives an
event-checking command from an RSU for the first time. When the timer is fired, the node transfers to
HCS mode, and more detailed data would be uploaded to the RSU (Algorithm 1, Lines 4–8). When the
HCS data are received by the RSU, they would be forwarded to the cloud (Algorithm 2, Line 9).

When the cloud receives the sensing data from the RSUs, it would store the data, check whether
an event has happened by its backend event analysis system and send the final result, i.e., the EVENT
message, back to the RSU (Algorithm 2, Lines 20–23). When an RSU receives the EVENT message,
if the event is verified to be false, it would adjust its threshold τ1 for the event through Equation (14)
(Algorithm 2, Lines 14–16). τ1 might be adjusted to a larger value, which makes it harder to trigger
the event-checking procedure. Threshold τ1 is also updated by Equation (15) as time passes by
(Algorithm 2, Lines 17–18).

Sensors 2018, 18, 82 12 of 23

Algorithm 1: Handling messages at ordinary nodes.

1 work in LCS mode;
2 if weight of data w(d, e) is greater than τ0 then
3 report data to RSU;

4 if receive event_checking command from RSU then
5 set a timer tm(β);
6 if timer tm(β) fires then
7 transfer sel f to HCS mode;
8 adaptively upload HCS data to RSU;

9 if receive threshold-setting message then
10 update threshold τ0;

11 for every update time unit passes do
12 generate sketch of sensed data;
13 send sketch to RSU;

Algorithm 2: Handling messages at RSUs and the cloud.

1 ——————– at RSU ——————–
2 if receive LCS data from ordinary nodes then
3 accumulate data to a dataset D;
4 if weight of dataset w(D) exceeds threshold τ1 then
5 initiate an event_checking procedure;
6 broadcasting event_checking command;
7 wait for receiving HCS messages;

8 if receive HCS data from ordinary nodes then
9 forward data to the cloud;

10 if receive sketch messages from ordinary nodes then
11 accumulate sketch data sets;
12 re-calculate threshold of τ0 through (13);
13 broadcast update message of τ0;

14 if receive EVENT messages from cloud then
15 if false EVENT then
16 τ1 = τ1 ∗ (1 + ∆);

17 for every time unit (TU) passes by do
18 τ1 = τ1 ∗ (1− ∆ ∗ tu

TU);

19 ——————– at cloud——————–
20 if receive HCS data from RSU then
21 accumulates and gathers the data;
22 check if an event happens;
23 send EVENT message to RSU;

The threshold at the ordinary nodes, denoted by τ0, is calculated and updated through sketches.
For every unit of update time, a sketchis generated at ordinary nodes and sent to the RSU (Algorithm 1,
Lines 12–13), where the threshold τ0 is recalculated through Equation (13) (Algorithm 2, Lines 14–12).
The new threshold is then broadcast through a update message within its coverage (Algorithm 2,
Line 13). The node receiving the update message from the RSU would just reset the threshold τ0

(Algorithm 1, Line 10).

Sensors 2018, 18, 82 13 of 23

5. Experimental Study

5.1. Environmental Setup

To verify the performance of the proposed algorithm, we conduct experiments on the ONE
platform [37] with a real-world road network. ONE is a simulation environment that is capable
of generating node movement using different movement models routing messages between nodes
with various DTN routing algorithms. There are six fog nodes/RSUs and 60 vehicular nodes in the
network, which is part of the campus of Xiamen University centered at latitude: 24.4390262, longitude:
118.0977218 (Figure 3). The total simulation time is 43,200 s. To simulate the monitoring application,
events and sensing data are injected through a data generator. The interval between two sequential
events follows the Poisson distribution with parameter λ = 200 s. Each event is attached to a location
along the road and would be handed over or nullified after within 1000–5000 s. For event e, it has an
impact area with a radius of Re. When a node enters the impact area, its sensed data would reflect the
impact of that event. The weight of sensed data follows the normal distribution wx(d, e) ∼ N(αx, σx):

αx =

{
εx, dis(s, e) > Re

εx + ξx ∗ Re−dis(s,e)
Re

, dis(s, e) ≤ Re
, x ∈ {LCS, HCS} (16)

where the subscript x could be l or h representing the LCS and HCS modes, εx represents the impact
of sensing noise and dis(s, e) is the distance between source s and event e. ξx represents the impact
of the event on the sensing data, and Re−dis(s,e)

Re
increases when node s gets closer to the event, which

would increase the weight of data. The average duration of nodes passing by an RSU, t̃, is calculated
by dividing the length of the road segment that the RSU covers by the average speed of vehicles.
Furthermore, the sensing frequency and data size are also defined by the mode of sensing. When a
node is in LCS mode, it generates a piece of data of 50 K; when a node works in HCS mode, it generates
a piece of data with 500 K. The bandwidth of the link that uploads data from ordinary nodes to RSUs
is 500 K/s. We assume ideal links when two nodes meet and establish a connection. Table 1 lists the
default parameters of the simulation setting.

Table 1. Default parameters of the simulation. LCS, low cost sensing; HCS, high cost sensing.

Parameter Value Description

n 60 number of vehicular nodes
n_RSU 6 number of RSU nodes
n_time 43,200 s simulation duration

L 3000 m length of road segment
d_time ∼[25–35] s interval of sensing

Re 60 m sensing radius of RSU nodes
speed ∼[5, 10] m/s speed of nodes
data 50,500 KB size of sensing data at LCS/HCS

cache_size 300 MB cache size of nodes
e_length ∼[1000, 5000] s life span of events

λ 200 s interval of events (Poisson distribution)
m 3 number of readings at RSU for event-checking
∆ 0.05 predefined increment factor for τ1

TU 10,000 s unit of time for threshold adjustment
εl , εh ∼[0,0.5], ∼[0.0.1] range of noise in LCS and HCS
σl , σh 0.1, 0.05 standard deviation of weight in LCS and HCS

Sensors 2018, 18, 82 14 of 23

Figure 3. Part of the snapshot of the simulation field where six RSUs and 60 vehicular nodes are
deployed at Xiamen University campus centered at latitude: 24.4390262, longitude: 118.0977218.
Circles denote the nodes and their sensing areas; five-pointed stars denote the RSUs.

5.2. Metrics and Compared Algorithms

The event detection accuracy and overall system cost are used as evaluation metrics for the
evaluation of the algorithms. The accuracy could be further divided into recall rate (p1) and precision
(p2), which are defined as follows:

p1 =
n0

n0 + n1
; p2 =

n0

n0 + n2
(17)

where n0 is the number of detected true events, n1 is the number of undetected true events and n2 is
the number of detected false events. Precision (also called positive predictive value) is the fraction of
relevant events among the retrieved events, while recall (also known as sensitivity) is the fraction of
relevant events that have been retrieved over the total amount of relevant events.

Nodes sense the data and send them to the RSUs, and events are verified by the ITS servers.
The overall cost contains the cost of sensing at local nodes, computation at nodes, RSUs and the ITS
center and data transmissions among nodes and RSUs. When nodes work in HCS mode, they generate
more data and hence need to upload a larger amount of data to the RSUs. For simplicity, we use
the total number of messages sent as an indicator for the overall cost, and the average time spent
on detecting the events is also considered. The average results of five simulations are presented in
this section.

There is not much research directly related to the fog-based data-gathering and event-monitoring
in VANETs. For fair comparison with the proposed algorithm, we also conducted another four
data-gathering and event detection schemes: (1) NAIVE: nodes sense in HCS mode periodically all the
time, and whenever a node encounters an RSU, its data are uploaded to the RSU and then forwarded
to the cloud for event detection. (2) PROPHET [38]: a contact history-based protocol. Nodes exchange
data according to the data forwarding probability to RSUs based on the contact history; (3) ESSMD [39]:
the takes advantage of all chances to upload the data, but reduces the number of event broadcasting
when vehicles detect the same event in close proximity. The PROPHET scheme is designed for the
delay-tolerant network (DTN) [7], where obviously, VANETs comprise one kind of DTN. PROPHET
and ESSMD are classic and provide good comparison to our scheme, which aims to decrease the cost
while at the same time achieving an acceptable detection rate.

Sensors 2018, 18, 82 15 of 23

5.3. Overall Performance

Table 2 presents the overall performance of the algorithms. The proposed scheme could reduce
more than 84 percent of the data transmissions compared with other existing algorithms, while at the
same time it detects the events and gathers the event data.

About 160 events are generated, and the number of true positive, true negative, false positive and
false negative events is also presented. NAIVE has the lowest message transmissions, and the recall
rate of NAIVE is 0.2648, which is the lowest. This is because for NAIVE, data are uploaded only when
a node encounters an RSU. The number of data transmissions is about 2.34× 104, and many data have
to be stored locally and dropped when there is not enough storage space, which leads to some loss of
event detections. Therefore, NAIVE has the lowest recall rate and precision of event detections.

For PROPHET and ESSMD, data are forwarded to encountering nodes, and all chances are utilized
to upload the data. They have a much higher recall rate, which is about 0.93, and also incur a larger
cost of data transmissions. The numbers of message transmissions of PROPHET and ESSMD are
about 3421.98× 104 and 2583.36× 104 respectively. In contrast with other algorithms, the proposed
TPEG scheme has a much lower cost of data transmissions; the number of message transmissions is
about 403.26× 104, which is about eight percent of that of PROPHET and about 15.6 percent of that of
ESSMD. This is because TPEG adopts LCS mode for event-monitoring, and detailed data are generated
and uploaded only when a threshold at the RSU is broken. This generates far fewer data and incurs
much lower transmission cost. The reduced transmission of messages, however, does not harm the
precision and recall of the detection of events. The precision of the three algorithms is within the range
of [0.97, 0.99], and the recall of TPEG is 0.9226, about 0.01 lower than those of PROPHET and ESSMD.
Through the two-phase threshold suppression, TPEG reduces much data transmissions compared
with other algorithms, while at the same time detecting all the events and gathering the event data.

Table 2 also presents the time needed for detecting an event. If an event is generated at t1 and is
confirmed at ITS at t2, then |t2− t1| is the time needed for the event detection. From the table, we could
see that the average detection time of NAIVE is 36.29 min, which is the longest, and those of PROPHET,
ESSMD and TPEG are about 28.83, 30.6 and 33.69 min, respectively. NAIVE has to wait for some
time before uploading the data when a vehicular node is not covered by the RSU, yet other schemes
could forward the data to encountered vehicles, who help to upload the data for event detection.
The length of the detection time of TPEG is larger than PROPHET and ESSMD because not all the
nodes broadcast and forward the sensed data. For TPEG , when an “event-checking procedure” is
issued, the network would select a node for the data upload and forwarding, which leads to some
delay of the event detection.

Table 2. Comparison of algorithms under default parameters.

Algorithm NAIVE PROPHET ESSMD TPEG

True Positive (#/ratio) 42.2/0.2497 147.62/0.8242 150.63/0.8389 147.47/0.8317
True Negative (#/ratio) 7.51/0.0444 17.32/0.0967 16.68/0.0929 14.66/0.0827
False Positive (#/ratio) 2.11/0.0125 3.47/0.0194 2.4/0.0134 2.81/0.0158

False Negative (#/ratio) 117.19/0.6934 10.69/0.0597 9.84/0.0548 12.38/0.0698
Recall Rate (p1) 0.2648 0.9325 0.9387 0.9226
Precision (p2) 0.9524 0.977 0.9843 0.9813

Transmissions (×104) 2.34 3421.98 2583.36 403.26
Average Time (minute) 36.29 28.83 30.6 33.69

5.4. Impact of Factors

From the overall performance analysis, we could see that TPEG has great improvement compared
with other schemes on the overhead of message transmissions. The advantage lies in the two modes of
sensing, as well as message suppression through thresholds. In this subsection, we vary the parameter
settings and study their impacts on the performances.

Sensors 2018, 18, 82 16 of 23

Figure 4 shows the impact of the number of nodes on the recall rate, which goes up with the
amount of nodes within the network. When there are fewer nodes, e.g., five, many events are not
detected, and the recall rate is less than 0.27. This is because there are not many vehicular nodes sensing
the events, and consequentially, only a small number of samples is generated and many events missed.
As mentioned previously, in the NAIVE scheme, data are uploaded only when a node encounters an
RSU, so its recall rate is the lowest, and the increase in the number of nodes has less impact on the
rate. When the number of nodes increases, the recall of all the schemes except NAIVE goes up quickly.
The recall of TPEG is a little bit smaller than those of PROPHET and ESSMD. When there are more
than 60 nodes within the network, its recall rate goes up to about 0.92, which is almost the same as
those of PROPHET and ESSMD.

0 10 20 30 40 50 60 70 80 90 100
number of nodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

re
ca

ll
ra

te

NAIVE
PROPHET

ESSMD
TPEG

Figure 4. Impact of the number of nodes on the recall rate.

5.4.1. Number of Nodes

Figure 5 shows the impact of the number of nodes on the message transmissions. When there
are more nodes in the network, more messages are transmitted with the network and more data are
uploaded to the RSU for all the schemes. Yet, for the PROPHET scheme, the increase of the messages is
drastic because nodes would broadcast messages to their neighboring nodes. For the ESSMD scheme,
it adopts a controlled broadcasting strategy, so the increase of the number of messages is smaller.
For the TPEG scheme, it adopts a threshold-based strategy to suppress the data upload, which incurs
fewer transmissions. The amount of messages transmitted is less than 16.2% of those of PROPHET
and ESSMD. Additionally, the increase of TPEG with the number of nodes is much smaller, as shown
by the flat line. Figure 5 shows that NAIVE and TPEG scale well with the number of nodes, yet TPEG
has a far larger event-detection rate.

0 10 20 30 40 50 60 70 80 90 100
number of nodes

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

m
es

sa
ge

 tr
an

sm
iss

io
ns

 (1
04)

NAIVE
PROPHET

ESSMD
TPEG

Figure 5. Impact of the number of nodes on the number of message transmissions.

Sensors 2018, 18, 82 17 of 23

Figure 6 shows the impact of the number of nodes on the time needed for detecting events.
The time for event detection goes down as the number of nodes increases. The more vehicular nodes
moving on the roads, the more data are sensed and uploaded with less delay to the RSUs for the event
detection. For example, in the proposed TPEG scheme, the average event detection time is about
37 min when there are five nodes, and about 27 min when there are 100 nodes in the network. When
there are fewer than 60 nodes, the detection time is about 5–10 min longer than those of PROPHET
and ESSMD. Yet, when there are more nodes on the network, e.g., 100, the detection time of TPEG is
almost the same as that of PRPHET.

0 10 20 30 40 50 60 70 80 90 100
number of nodes

20

25

30

35

40

45

av
er

ag
e

tim
e

(m
in

)

NAIVE
PROPHET

ESSMD
TPEG

Figure 6. Impact of the number of nodes on the average detection time.

5.4.2. Size of Cache

The vehicular nodes adopt a “store-carry-forward” strategy [40] for the message transmissions,
so the cache size of nodes would have an impact on the performance. Figures 7 and 8 show that the
recall rate and message transmissions grow as the cache size increases. This is true especially for
PROPHET and ESSMD, because within these schemes, the nodes work in the high cost sensing mode
as the default, and they would diffuse the sensed data to neighboring nodes, which requires a larger
cache size for the data storage, and the message transmissions would increase. When the cache size is
small, e.g., 50 Megabytes, some data are dropped, and the recall of events is lower than 0.3 and the
message transmissions relatively low. For the TPEG scheme, the cache size has less impact on the
recall rate and the message transmissions. When the cache size grows from 50 M–300 M, the recall
rate increases from 0.8926–0.9245 and the message transmissions grow from 302× 104–493× 104.
This is because the nodes generate data in LCS mode by default, which requires less cache space.
Moreover, the two-level thresholds suppress the message diffusion and upload and further reduce the
message transmissions.

Figure 9 shows the impact of cache size on the detection time. For the PROPHET and ESSMD
scheme, the detection time decreases as the cache size grows. The length of time drops from
51(41)–28(30) for PROPHET(ESSMD) when the cache size grows from 50 M–300 M. This is because
when there are larger cache sizes, a larger number of messages is transmitted, and more data are
uploaded to RSU to speed up the detection of events. For the NAIVE and TPEG scheme, the cache size
has little impact on the event detection time.

Sensors 2018, 18, 82 18 of 23

50 100 150 200 250 300
node cache size(M)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

re
ca

ll
ra

te

NAIVE
PROPHET

ESSMD
TPEG

Figure 7. Impact of cache size on the recall rate.

50 100 150 200 250 300
node cache size(M)

0

500

1000

1500

2000

2500

3000

3500

4000

m
es

sa
ge

 tr
an

sm
iss

io
ns

 (1
04)

NAIVE
PROPHET

ESSMD
TPEG

Figure 8. Impact of cache size on the number of message transmissions.

50 100 150 200 250 300
node cache size(M)

0

10

20

30

40

50

60

av
er

ag
e

tim
e

(m
in

)

NAIVE
PROPHET

ESSMD
TPEG

Figure 9. Impact of cache size on the average detection time.

Sensors 2018, 18, 82 19 of 23

5.4.3. Sensing Frequency

Another impact factor of the event detection is the sensing frequency of nodes. In Figures 10–12,
we varied the sensing interval to study its impact on the recall rate, message transmissions and the
length of detection time. When the sensing frequency increases, or the interval of sensing decreases,
more sensing data are generated and uploaded to the RSUs for further processing, so the recall rate and
the message transmission grow (Figures 10 and 11), and the average detection time decreases (Figure 12)
for all the schemes. TPEG has a similar recall rate as PROPHET and ESSMD, yet has a much lower cost
of message transmissions. For all the schemes except NAIVE, the recall grows from 0.82 to 0.97 when
the interval of sensing decreases from 100∼120 s to 5∼10 s. For the PROPHET and ESSMD scheme,
the message transmissions grow about 1.96∼2.34-times more, while the TPEG only increases about
69 percent, from 291× 104 to 492× 104. This is largely due to the low cost of LCS monitoring mode in
the TPEG scheme. The proposed scheme scales well with the sensing frequency.

100~120 60~80 20~40 5~10
interval of sensing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

re
ca

ll
ra

te

NAIVE
PROPHET

ESSMD
TPEG

Figure 10. Impact of sensing interval on the recall rate.

100~120 60~80 20~40 5~10
interval of sensing (s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

m
es

sa
ge

 tr
an

sm
iss

io
ns

 (1
04)

NAIVE
PROPHET

ESSMD
TPEG

Figure 11. Impact of sensing interval on the number of message transmissions.

Sensors 2018, 18, 82 20 of 23

100~120 60~80 20~40 5~10
interval of sensing (s)

0

5

10

15

20

25

30

35

40

45

50

av
er

ag
e

tim
e

(m
in

)

NAIVE
PROPHET

ESSMD
TPEG

Figure 12. Impact of sensing interval on the average detection time.

5.4.4. Threshold Adjustment

TPEG adopts the 2LTA strategy to adaptively adjust the thresholds at the node and the RSU
levels to suppress sensing and data upload operations. According to Equation (13), the threshold t0 is
dynamically set according to m, which is the expected number of readings received by the RSU for
the event-checking decision. Threshold τ1 would increase with the incremental factor ∆ according to
Equation (14) and would decrease with the time of epochs passed according to Equation (15). τ1 is
initially set to 0.4, m to 3 and TU to 10,000 through parameter tuning. Figure 13 shows the change
of τ1 with time, and Table 3 shows the impact of ∆ for TPEG. When ∆ is larger, e.g., 0.1, τ1 goes up
with time more quickly and obviously. When ∆ goes up from 0.03–0.1, the recall goes down from
0.9554 to 0.8929, the message transmission decreases from 618.77× 104 to 532.22× 104 and the average
detection time goes up from 24.73 min to 37.55 min. This is because larger ∆ leads to larger τ1, which
leads to a lesser number of event-checking procedures, which in turn leads to a smaller amount of
data transmissions and some misses and delay of event detections. When ∆ is in the medial, e.g., 0.05,
τ1 sways accordingly to time. Its recall, transmissions and detection time are 0.94, 578.38× 104 and
25.65, respectively, which are in the medial range of all the results.

0 60 120 180 240 300 360 420 480 540 600 660 720
time (minutes)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

th
re

sh
ol

d
at

 R
SU

(
1)

= 0.03
= 0.05

= 0.07
= 0.10

Figure 13. Change of threshold τ1 with time.

Sensors 2018, 18, 82 21 of 23

Table 3. Performance with different incremental factors on τ1.

Incremental Factor (∆) 0.03 0.05 0.07 0.1

Recall Rate (p1) 0.9554 0.9265 0.9091 0.8929
Precision (p2) 0.9350 0.9403 0.9459 0.9346

Transmissions (104) 618.77 578.38 556.78 532.22
Average Time (minute) 24.73 25.65 30.12 37.55

6. Conclusions

In this paper, we proposed an efficient continuous event-monitoring and data-gathering scheme
called TPEG based on fog nodes in VANETs. A fog-based two-level threshold strategy is adopted
to suppress unnecessary data upload and transmissions. In the monitoring phase, nodes sense the
environment in low cost sensing mode for data generation. These data are then sent to the RSUs,
and the confidence of events is calculated. If the confidence exceeds some threshold, nodes would
transfer to event-checking phase, and some nodes would be selected to transfer to deep sensing mode
to sense more accurate data of the environment. TPEG adaptively adjusts the threshold to upload a
suitable amount of data for decision making, while at the same time suppressing unnecessary message
transmissions. Experimental studies demonstrate that the proposed scheme could reduce more than
84 percent of the data transmissions compared with other existing algorithms, while at the same time,
it detects events and gathers the event data with some delays.

For future work, we are going to use real-world vehicular trajectories and log data of vehicles
to demonstrate the effectiveness of the proposed scheme. Furthermore, we are going to broaden
the definition of events and use the scheme as a basic event-monitoring and data-gathering block to
construct specific VANET applications.

Acknowledgments: This research is supported by the Natural Science Foundation of China (61672441),
the Scientific Research Project of National Language Committee of China (YB135-49), the National Key Technology
Support Program (2015BAH16FF01) and the State Scholarship Fund of China Scholarship Council (201706315020).

Author Contributions: Yongxuan Lai, Jinsong Su and Fan Yang developed the algorithms and wrote the
manuscript. Yongxuan Lai, Tian Wang and Jinsong Su processed the trajectory dataset. Qifeng Zhou, Yifan Xu
and Lu Zhang conducted the experimental simulations. Yongxuan Lai and Jinsong Su performed the analysis.
All authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Al-Sultan, S.; Al-Doori, M.M.; Al-Bayatti, A.H.; Zedan, H. A comprehensive survey on vehicular Ad Hoc
Network. J. Netw. Comput. Appl. 2014, 37, 380–392.

2. Dua, A.; Kumar, N.; Bawa, S. A systematic review on routing protocols for vehicular Ad Hoc Networks.
Veh. Commun. 2014, 1, 33–52.

3. Xu, Y.; Chen, X.; Liu, A.; Hu, C. A latency and coverage optimized data collection scheme for smart cities
based on vehicular Ad-hoc networks. Sensors 2017, 17, 888.

4. Jiang, D.; Delgrossi, L. IEEE 802.11 p: Towards an International Standard for Wireless access in Vehicular
Environments. In Proceedings of the Vehicular Technology Conference (VTC Spring 2008), Singapore,
11–14 May 2008; pp. 2036–2040.

5. Kosch, T.; Adler, C.; Eichler, S.; Schroth, C.; Strassberger, M. The scalability problem of vehicular Ad Hoc
Networks and how to solve it. IEEE Wirel. Commun. 2006, 13, 22–28.

6. Lai, Y.; Xie, J.; Lin, Z.; Wang, T.; Liao, M. Adaptive data-gathering in mobile sensor networks using speedy
mobile elements. Sensors 2015, 15, 23218–23248.

7. Lai, Y.; Gao, X.; Liao, M.; Xie, J.; Lin, Z.; Zhang, H. Data gathering and offloading in delay tolerant mobile
networks. Wirel. Netw. 2016, 22, 959–973.

8. Wang, T.; Zeng, J.; Lai, Y.; Cai, Y.; Tian, H.; Chen, Y.; Wang, B. Data collection from WSNs to the cloud based
on mobile Fog elements. Future Gener. Comput. Syst. 2017, in press.

Sensors 2018, 18, 82 22 of 23

9. Lee, U.; Magistretti, E.; Gerla, M.; Bellavista, P.; Corradi, A. Dissemination and harvesting of urban data
using vehicular sensing platforms. IEEE Trans. Veh. Technol. 2009, 58, 882–901.

10. Intel. Technology and Computing Requirements for Self-Driving Cars. Available online:
https://www.intel.com/content/www/us/en/automotive/driving-safety-advanced-driver-assistance-
systems-self-driving-technology-paper.html (accessed on 26 December 2017).

11. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Fog Computing and its Role in the Internet of Things.
In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland,
17 August 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 13–16.

12. Zeng, J.; Wang, T.; Lai, Y.; Liang, J.; Chen, H. Data Delivery from WSNs to Cloud based on a Fog
Structure. In Proceedings of the Fourth IEEE International Conference on Advanced Cloud and Big Data,
Chengdu, China, 13–16 August 2016; pp. 959–973.

13. Hao, Z.; Novak, E.; Yi, S.; Li, Q. Challenges and software architecture for fog computing. IEEE Internet Comput.
2017, 21, 44–53.

14. Aazam, M.; Huh, E.N. Fog Computing and Smart Gateway based Communication for Cloud of Things.
In Proceedings of the 2014 International Conference on Future Internet of Things and Cloud (FiCloud),
Barcelona, Spain, 27–29 August 2014; pp. 464–470.

15. Lee, U.; Zhou, B.; Gerla, M.; Magistretti, E.; Bellavista, P.; Corradi, A. Mobeyes: Smart mobs for urban
monitoring with a vehicular sensor network. IEEE Wirel. Commun. 2006, 13, 52–57.

16. Hull, B.; Bychkovsky, V.; Zhang, Y.; Chen, K.; Goraczko, M.; Miu, A.; Shih, E.; Balakrishnan, H.; Madden, S.
CarTel: A Distributed Mobile Sensor Computing System. In Proceedings of the 4th International Conference
on Embedded Networked Sensor Systems, Boulder, CO, USA, 31 October–3 November 2006; Association for
Computing Machinery: New York, NY, USA, 2006; pp. 125–138.

17. Palazzi, C.E.; Pezzoni, F.; Ruiz, P.M. Delay-bounded data-gathering in urban vehicular sensor networks.
Pervasive Mob. Comput. 2012, 8, 180–193.

18. Delot, T.; Mitton, N.; Ilarri, S.; Hien, T. Decentralized Pull-based Information Gathering in Vehicular
Networks Using GeoVanet. In Proceedings of the 2011 IEEE 12th International Conference on Mobile Data
Management, Lulea, Sweden, 6–9 June 2011; Volume 1, pp. 174–183.

19. PÅĆaczek, B. Selective data collection in vehicular networks for traffic control applications. Transp. Res.
Part C Emerg. Technol. 2012, 23, 14–28.

20. Skordylis, A.; Trigoni, N. Efficient data propagation in traffic-monitoring vehicular networks. IEEE Trans.
Intell. Transp. Syst. 2011, 12, 680–694.

21. Zekri, D.; Defude, B.; Delot, T. Building, sharing and exploiting spatio-temporal aggregates in vehicular
networks. Mob. Inf. Syst. 2014, 10, 259–285.

22. Li, X.; Huang, H.; Yu, X.; Shu, W.; Li, M.; Wu, M.Y. A new paradigm for urban surveillance with vehicular
sensor networks. Comput. Commun. 2011, 34, 1159–1168.

23. Xie, K.; Luo, W.; Wang, X.; Xie, D.; Cao, J.; Wen, J.; Xie, G. Decentralized Context Sharing in Vehicular
Delay Tolerant Networks with Compressive Sensing. In Proceedings of the 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS), Nara, Japan, 27–30 June 2016; pp. 169–178.

24. Satyanarayanan, M.; Schuster, R.; Ebling, M.; Fettweis, G.; Flinck, H.; Joshi, K.; Sabnani, K. An open
ecosystem for mobile-cloud convergence. IEEE Commun. Mag. 2015, 53, 63–70.

25. Sharma, S.K.; Wang, X. Live data analytics with collaborative edge and cloud processing in wireless IoT
networks. IEEE Access 2017, 5, 4621–4635.

26. Tang, B.; Chen, Z.; Hefferman, G.; Pei, S.; Tao, W.; He, H.; Yang, Q. Incorporating intelligence in fog
computing for big data analysis in smart cities. IEEE Trans. Ind. Inform. 2017, 13, 2140–2150.

27. Eltoweissy, M.; Olariu, S.; Younis, M. Towards Autonomous Vehicular Clouds. In Proceedings of
the International Conference on Ad Hoc Networks, Victoria, BC, Canada, 18–20 August 2010; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 1–16.

28. Hussain, R.; Rezaeifar, Z.; Oh, H. A paradigm shift from vehicular Ad Hoc Networks to VANET-based
clouds. Wirel. Pers. Commun. 2015, 83, 1131–1158.

29. Mershad, K.; Artail, H. Finding a STAR in a vehicular cloud. IEEE Intell. Transp. Syst. Mag. 2013, 5, 55–68.
30. Vaquero, L.M.; Rodero-Merino, L. Finding your way in the fog: Towards a comprehensive definition of fog

computing. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 27–32.

https://www.intel.com/content/www/us/en/automotive/driving-safety-advanced-driver-assistance-systems-self-driving-technology-paper.html
https://www.intel.com/content/www/us/en/automotive/driving-safety-advanced-driver-assistance-systems-self-driving-technology-paper.html

Sensors 2018, 18, 82 23 of 23

31. Kai, K.; Cong, W.; Tao, L. Fog computing for vehicular Ad-hoc networks: Paradigms, scenarios, and issues.
J. China Univ. Posts Telecommun. 2016, 23, 56–96.

32. Wang, T.; Peng, Z.; Wen, S.; Lai, Y.; Jia, W.; Cai, Y.; Tian, H.; Chen, Y. Reliable wireless connections for
fast-moving rail users based on a chained fog structure. Inf. Sci. 2017, 379, 160–176.

33. Wang, T.; Zeng, J.; Bhuiyan, M.Z.A.; Tian, H.; Cai, Y.; Chen, Y.; Zhong, B. Trajectory privacy preservation
based on a fog structure in cloud location services. IEEE Access 2017, 5, 7692–7701.

34. Menard, S. Applied Logistic Regression Analysis; Sage: Newcastle, UK, 2002; Volume 106.
35. Crevier, D.; Lepage, R. Knowledge-based image understanding systems: A survey. Comput. Vis. Image Underst.

1997, 67, 161–185.
36. Lai, Y.; Lin, Z. Data gathering in opportunistic wireless sensor networks. Int. J. Distrib. Sens. Netw. 2012,

8, 230198.
37. Keränen, A.; Ott, J.; Kärkkäinen, T. The ONE Simulator for DTN Protocol Evaluation. In Proceedings

of the 2nd International Conference on Simulation Tools and Techniques (SIMUTools ’09), Rome, Italy,
2–6 March 2009; ICST: New York, NY, USA, 2009.

38. Lindgren, A.; Doria, A.; Schelén, O. Probabilistic Routing in Intermittently Connected Networks. In Service
Assurance with Partial and Intermittent Resources; Springer: Berlin/Heidelberg, Germany, 2004; pp. 239–254.

39. Koubek, M.; Rea, S.; Pesch, D. Event Suppression for Safety Message Dissemination in VANETs.
In Proceedings of the 2010 IEEE 71st Vehicular Technology Conference (VTC 2010-Spring), Taipei, Taiwan,
16–19 May 2010; pp. 1–5.

40. Zhao, J.; Cao, G. VADD: Vehicle-assisted data delivery in vehicular Ad Hoc Networks. IEEE Trans. Veh. Technol.
2008, 57, 1910–1922.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Event Monitoring and Data Gathering
	VANETs and Fog Computing

	Preliminaries
	Network and Data Gathering
	Event and Weight of Data

	TPEG Framework
	Overview
	Low Cost Monitoring
	Event Checking and Node Selection
	Adaptive Data Upload
	Threshold Adjustment
	Node Level Adjustment
	RSU Level Adjustment

	Algorithm Descriptions

	Experimental Study
	Environmental Setup
	Metrics and Compared Algorithms
	Overall Performance
	Impact of Factors
	Number of Nodes
	Size of Cache
	Sensing Frequency
	Threshold Adjustment

	Conclusions
	References

