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Urban Traffic Coulomb’s Law: A New Approach
for Taxi Route Recommendation

Yongxuan Lai , Zheng Lv , Kuan-Ching Li, and Minghong Liao

Abstract— Recently, an increased amount of effort has been
focused on optimizing the selection of routes for taxis, as part
of the development of smart urban environments, and the
increase of the accumulated trajectory data sets. One challenging
issue is to match and recommend appropriate cruising routes
to taxis, as most taxis cruise on streets aimlessly looking for
passengers. Drivers encounter lots of difficulty in optimizing
their cruise routes and hence increasing their incomes, and
such inability not only decreases their profit but also increases
the traffic load in urban cities. In this paper, the concept of
urban traffic Coulomb’s law is coined to model the relationship
between taxis and passengers in urban cities, based on which
a route recommendation scheme is proposed. Taxis and pas-
sengers are viewed as positive and negative charges. It first
collects useful information such as the density of passengers
and taxis from trajectories, then calculates the traffic forces
for cruising taxis, based on which taxis are routed to optimal
road segments to pick up desired passengers. Different from
existing route recommendation methods, the relationship among
taxis and passengers are fully taken into account in the proposed
algorithm, e.g., the attractiveness between taxis and passengers,
and the competition among taxis. Moreover, real-time dynamics
and geodesic distances in road networks are also considered
to make more accurate and effective route recommendations.
Extensive experiments are conducted on the road network using
the trajectories generated by approximately 5,000 taxis to verify
the effectiveness, and evaluations demonstrate that the proposed
method outperforms existing methods and can increase the
drivers’ income more than 8%.

Index Terms— Traffic force, urban traffic Coulomb’s law,
cruising route recommendation, taxi trajectories.

I. INTRODUCTION

TAXIS play important role in the daily life of urban citi-
zens. Different from other public transportations such as

buses or subways, taxis do not follow fixed routes periodically.
Drivers have to plan their own routes right after passengers
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Fig. 1. Scatter graph between drivers’ daily incomes and their activeness
which is represented by the number of daily recorded active GPS points. There
are 343 drivers whose recorded number of daily active GPS points are within
range (250, 260] (indicated by the red rectangle). Their average and maximal
income are 1064.5 and 1502.9 RMB respectively, and the standard variance
is 149.23.

are dropped off [1], and their incomes are largely determined
by the selection of these routes. Nevertheless, it is not easy
for a driver to schedule and select the best route in order to
maximize his/her earnings. Fig. 1 depicts the scatter graph
between the drivers’ daily income and their activeness, which
is represented by the number of recorded daily active GPS
points. From the figure, we could see that the daily income
positively correlates with the drivers’ activeness, However,
drivers with roughly the same activeness have large differ-
ence on the incomes. There are 343 drivers whose recorded
number of daily active GPS points are within range (250,260]
(indicated by the red rectangle). Their average and maximal
income are 1064.5 and 1502.9 RMB respectively, and the
standard variance is 149.23. This is mainly due to the route
selection. If drivers select a route that has no/fewer passengers,
they would waste their time and cruise in vain, which also
burdens the traffic load in urban cities.

Recent years even some demand responsive taxi service
platforms, such as Didi Taxi and Uber, emerge to guide taxis
to pick up passengers, the drivers still need to plan their own
cruising routes when there are no demands from the platform.
Thus, it is a key issue to help taxi drivers to select better and
efficient cruising routes to increase their incomes. This would
mutually benefit both drivers and passengers, as well as to
improve the efficiency of urban transportation systems.

One possible solution is through the learning of massive
trajectory and operation datasets. With the advancement of
smart devices and networking technologies, location-based
services (LBS) is widely used in our daily lives [2]–[4].

1524-9050 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2883-0781
https://orcid.org/0000-0001-7589-6284


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Most taxis are equipped with GPS localizer, and geographic
positions are reported to the operating company periodically,
e.g. 2-3 times every minute [5]. Other information of each
taxi, such as the occupancy, is also recorded. Having these
datasets, it is possible to create new recommendation strategies
to help drivers select their cruising routes and pick up more
passengers [1], [6], [7]. In the passenger-pickup scenario, taxis
seek for passengers and passengers concurrently wait for taxis,
drivers have to compete with each other to pick up more
passengers. With this respect, there are similarities between the
traffic network and the electrostatic field in physics. Stated in
Coulomb’s law [8], there consists positive and negative charges
in electrostatic field, as like charges repel and unlike charges
attract. Similarly, the concept of Urban Traffic Coulomb’s law
is developed, where urban traffic network is viewed as a
big electrostatic field and taxis and passengers as the positive
and negative charges. A taxi ‘repels’ another taxi as they are
competing to find passengers, and a passenger ‘attracts’ a taxi
as they are looking for each other.

As we can note, there are two aspects in the Urban Traffic
Coulomb’s law: the former is the attractiveness between taxis
and passengers, and the latter is the competition among
taxis. Most existing research matched to the first aspect, road
segments with more passengers and hotspots are recommended
as cruising routes [1], [6], [7], [9]–[12]. Yet they failed to
consider the second aspect, i.e., the conflict and competition
among vacant taxis, which leads to ineffectiveness of the
route recommendation strategy. In this study, we propose
a taxi cruising route recommendation algorithm based on
Urban Traffic Coulomb’s law, which takes into account both
aspects of the Urban Traffic Coulomb’s law for the algorithm
design. The proposed algorithm collects useful information
from historical trajectories, and calculates the traffic attraction
and traffic forces for cruising taxis, based on which optimal
road segments are recommended to drivers to pickup desired
passengers. Extensive simulations conducted based on a real
trajectory dataset verified the effectiveness of the proposed
method. Results show that the proposed scheme can improve
taxis’ income by more than 8% when compared to the ground
truth and other methods.

The major contributions of this paper are as follows:
• The concept of Urban Traffic Coulomb’s law is proposed

to model the relationship between taxis and passengers in
urban cities. Taxis and passengers are viewed as positive
and negative charges. Formulas that calculate the traffic
charges and traffic forces are also defined within this
concept;

• We proposed a cruising route recommendation method
for taxi drivers based on Urban Traffic Coulomb’s Law.
It first collects useful information such as the density of
passengers and taxis from trajectories, then calculates the
attraction and traffic force for cruising taxis, based on
which taxis are routed to optimal road segments to pick
up desired passengers. The proposed algorithm considers
both the attractiveness between taxis and passengers, and
the competitions among both taxis and passengers;

• We optimised the Urban Traffic Coulomb’s Law on route
recommendation by considering the realtime dynamics

and geodesic distances in road networks. The attraction
force on a taxi is calculated based on distance on road net-
works, and it combines forces from the extended regions
and objects within its current region. Also, the short-
sighted route recommendation problem on road network
is avoided by redefining the recommended road segment.

• We conduct extensive experiments on large number
of real-world historical GPS trajectories and operation
dataset to verify the effectiveness of the proposed method.
Experimental results show that the proposed scheme can
effectively increase the income of taxi drivers compared
to other methods.

The remaining of this paper is organized as follows.
Section II presents the related works; section III and IV
give some preliminaries and introduce the concept of the
Urban Traffic Coulomb’s Law. Next, section V presents the
detailed description of the proposed algorithm, followed by
experiments studies and analysis delivered in Section VI.
Finally, section VII concludes the paper and presents future
directions.

II. RELATED WORK

A. Modeling of Vehicle Trajectories

A continuous trajectory is a function which gives the
location of a moving object as a continuous function of
time [13]. Vehicle trajectories can be utilized in many ways,
including urban planning, mobility pattern analysis, traffic con-
dition prediction and recommendation system. Reference [14]
presented a trajectory clustering method to discover spatial
and temporal travel patterns in a traffic network, where the
Longest Common Subsequence (LCS) between two vehi-
cle trajectories are used as the similarity measure, and a
density-based clustering algorithm is extended to incorporate
the LCS-based distance for the clustering. Reference [13]
introduced the symmetrized segment-path distance to measure
the spatial-temporal similarities of trajectories. Reference [15]
proposed the use of a trajectory flow graph, a dynamic graph
of aggregated flows constructed from individual trajectories,
to better understand and analyse city-wide mobility patterns.
In [6], a location-to-location graph model was adopted to
capture the relation between the passenger get-off location
and the next passenger get-on location. Similarly, in [1]
taxi drivers’ picking-up/dropping-off behaviors from the GPS
trajectories of taxicabs are learned, and then the knowledge are
fed into a probabilistic model which estimates the profit of the
candidate locations for a particular driver based on where and
when the driver requests the recommendation. In this way,
the historical and real-time request data are fused to enhance
the recommendation.

B. Route Recommender Systems

There are a number of research on the improvement of
cruising and routing planning for the taxi drivers or vehicles
in urban scenarios. Some focus on the angle of drivers, e.g.
behaviours of drivers and taxies [16], and more others are
based on mining the patterns on real-world datasets [17]–[20].
In this research the recommendation system based on GPS
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trajectories is roughly classified into two categories: the macro-
scopic and the microscopic recommender systems.

In macroscopic recommender systems, only the driving
directions are provided to taxi drivers, rather than the com-
plete driving routes. Generally, passengers pick-up locations
are extracted from GPS trajectories, and these locations are
clustered into multiple representative small areas, which are
the recommended driving directions for taxi drivers. For
example, hotspots were extracted from large amount of pick-
up points using clustering algorithm [21], so the hotspots
are recommended to taxis. Reference [17] took raw data
and combined users’ location histories and created tree-based
hierarchical graph. It applies hypertext induced topic search
to infer interesting locations, based on which the travel rec-
ommendations are conducted. Reference [22] proposed an
improved ARIMA method to forecast the spatial-temporal
variation of passengers in a hotspot to help taxi drivers find
new passengers. Reference [11] extracted vehicular mobility
pattern from the large-scale GPS trace datasets based on
clustering, and adopted a strategy for taxis to select pick-
up points using a Markov Decision Process (MDP) model.
Reference [6] adopted a location-to-location graph model,
referred to as OFF-ON model to capture the relation between
the passenger get-off location and the next passenger get-on
location. It then estimates the expected fare for a trip started at
a recommended location based on the waiting time, distance
and some other factors. Reference [23] proposed a Spatio-
Temporal Profitability (STP) map to guide taxicabs to cruise
around most profitable locations. The process assembles the
scores into an STP map that suggests potentially profitable
locations to the taxicab driver. By following the suggestions,
the driver can reduce cruising time and thus increase hits/her
income.

Compared with macroscopic recommender systems,
the microscopic systems provide taxi drivers with actual
driving routes. A recommendation system for both taxi
drivers and passengers is proposed in [24]. For taxi drivers,
the system recommends a good parking place with shorter
waiting time and longer distance for the next trip. However,
it is not evaluated by how much they can improve the
revenue. Reference [10] proposed a heuristic algorithm called
MSCR that scores each road segment and thus obtains a
cruising route with the highest score. In [25], a system
called pCruise is proposed to reduce the taxi’s cruising mile
by recommending the shortest cruising route with at least
one expected available passenger. Reference [26] proposed
a Gaussian Process Dynamic Congestion Model for non-
myopic adaptive routing to minimize the collective travel time
of entire fleets of vehicles. The method characterizes both the
dynamics and the uncertainty of congestion conditions.

The proposed approach in this paper belongs to the micro-
scopic one, which is more flexible and reliable to recommend-
ing the next driving road segment. Most of existing research
on macroscopic recommender systems mainly focuses on the
pick-up and drop-off points or the live trips from loaded
taxis. It neglects the competition among vacant taxis, so is
tended to recommend places with potential passengers, such as
airport and train station, regardless of the impact of other taxis.

TABLE I

XIAMEN TAXI DATASET. (a) POSITION TRAJECTORY
DATASET (T ). (b) OPERATION DATASET (O )

The concept of Urban Traffic Coulombs Law naturally takes
the competition among taxies or passengers into consideration.
We take the density of vacant taxis and passengers into
consideration, and reasonably recommend a direction with
larger “attractive force” rather than with more passengers.

Also the existing research focuses solely on historical trajec-
tories or data set, which makes the recommendation not adapt-
ing to the dynamics of road network and trip demand. Instead,
the proposed approach combines the historical trajectories
and real-time dynamics together for the recommendation.
The timeless of trajectories would improve the precision of
recommendation results.

III. PRELIMINARIES

A. Road Network and Route Recommendation

Road network can be represented and built in many
ways [27]–[29]. In this research, the road network is char-
acterized by a set of intersections and a set of road segments
(e.g. extracted from OpenStreetMap [30]). A road network is
represented by a graph G = (I, S), where I = I1, I2, . . . , In is
a finite set of n intersections and S = S1, S2, . . . , Sm is a finite
set of m road segments. A road segment is determined by two
intersections, Si = (I j , Ik), and it contains five properties: the
identification Si .id , the direction Si .dir , the length Si .length,
the starting intersection Si .s, and the ending intersection
Si .e. Similarly, a road intersection Ii is associated with four
properties, the identification Ii .id , the longitude Ii .lon, the
latitude Ii .lat , and the number of segments that connect to it
Ii .num. A route W is a directed sequence of L road segments,
i.e. W = S1, S2, . . . , SL , where W.s = S1.s, W.e = SL .e and
Sj .e = Sj+1.s for 1 ≤ j < L which means that consecutive
road sections contained in a route should share an intersection.

Real world taxi datasets are used in this research. The
position trajectories T records the position of taxis and
the operation trajectories O records the trips of taxis.
Table I(a) and Table I(b) list the format of GPS data with
an example. id is the identification of the trajectory or the
transaction, lon, lat denotes the longitude and latitude of
the position, time denotes the timestamp when the position
is recorded. sLon, sLat, onT ime stands for the longitude,
latitude and time when a passenger gets on a taxi. Similarly,
eLon, eLat, outT ime stands for the longitude, latitude and
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time when a passenger gets off a taxi. Column f ee stands for
the money of a transaction or trip, base on which the ground
truth of drivers’ earnings are deduced.

In fact, a taxi driver only makes decision when he/she
arrives at an intersection. Selecting different road segments
leads to different incomes among taxi drivers. Based on
the definitions and notations above, we formally define the
problem of optimal taxi route recommendation:

Definition 1: The optimal taxi route recommendation
problem.

Given: A road network G = (I, S), a trajectory T , a oper-
ation dataset O, and a set of taxis X .

Objective: Find the optimal route W for all taxis in X to
increase earnings. Specifically, providing the best road seg-
ment to a taxi drivers as soon as he/she reaches an intersection
and thus finding the optimal route W .

It should be noted that the optimal route from a fixed
intersection depends on the time context since the distribution
of passengers and taxis and traffic condition change throughout
the time. Intuitively, there are more passengers waiting for
taxis in the morning at some places, e.g. a residential area,
and more passengers in the evening at other places, e.g. an
entertainment area. Nevertheless, there is a great difference
on the total amount of passengers in different time slots, e.g.,
the number of passengers waiting for taxis in the daytime is
much larger than that of those during the midnight. Therefore,
a taxi route recommendation should be established on the
fully take advantage of the historical regularity and real-
time change of traffic. In this study we use the historical
trajectories as well as the real-time trajectories to make route
recommendations for taxis. Additional detailed discussions are
presented in Section V.

IV. URBAN TRAFFIC COULOMB’S LAW

In this section, preliminaries of the proposed approach are
introduced, including Coulomb’s law and the modified ver-
sion applied to urban traffic, called Urban Traffic Coulomb’s
law, or UTCL.

A. Coulomb’s Law

Coulomb’s law is one of the most important laws in
electricity to quantify the force between two electrostatic
charges. It states that the magnitude of the electrostatic force
between two point charges is directly proportional to the scalar
multiplication of the magnitudes of charges and inversely
proportional to the square of the distance between them; the
direction of the force is along the straight line that joins them.
In short, Coulomb’s law could be simply formulated as Eq. (1):

−→
F (q1, q2) = k × q1 × q2

r2 ×−→e q1,q2 (1)

where k = 8.99 × 109 is the Coulomb’s constant, q1 and
q2 are the signed magnitudes of the charges, the scalar r
is the distance between the charges, −→e q1,q2 is the radius
vector between q1 and q2.

−→
F is the electric force between

q1 and q2.

B. Urban Traffic Coulomb’s Law

Urban traffic network can be considered as a special cate-
gory of “electric field” by isomorphing passengers and taxis
as charges with different signs. For a vacant taxi driver, his
next potential passenger may exist in any region. In other
words, he/she is pulled by the “electric forces” produced by
the electric charges in all regions around him. It is clear that
the idea of Coulomb’s Law could be utilized to calculate the
“electric force” from the surrounding regions to the taxi driver,
denominated as Urban Traffic Coulomb’s Law (UTCL), being
defined as follows:

Definition 2 (Traffic Charge): A traffic charge c of region
r is composed of taxis and passengers in r , corresponding to
the sum of all the “electric charges” in r in “Coulomb’s Law”.

Traffic charge describes the ability on attracting taxis of a
region, which is positive in most cases. Fig. 2 depicts the
distributions of traffic charges in Xiamen City, China based
on Xiamen taxi dataset. Here we give an abstract concept
as there may have different formal definitions at different
circumstances. The formal definition on traffic charge used
in this paper is given in section V-B.

Definition 3 (Traffic Force): Traffic force describes the
direction and magnitude of the attractiveness on taxis and pas-
sengers, corresponding to the “electric force” in “Coulomb’s
Law”. For a taxi in region r1, the magnitude of the traffic force
from region r2 is directly proportional to the magnitudes of the
traffic charge in r2 and inversely proportional to the square of
the distance between them. The direction is along the straight
line joining them pointing to r1. Specifically, it can be stated
as a mathematical expression:

−→
F (r1, r2, t) = k ′ × Ct,r2

RK
r1,r2

×−→e r1,r2 (2)

where t is the current time slot, Rr1,r2 is the distance
between r1 and r2, K ≥ 0 is a constant, and the force is inverse
proportional to RK

r1,r2
. k ′ is a constant to normalise the result.

In this research k ′ = 1, as the absolute magnitude of k ′ does
not affect the overall calculation of route recommendations.
Ct,r2 is the traffic charge of r2 in t , Rr1,r2 is the distance
between the r1 and r2, −→e r1,r2 stands for the direction from
r1 to r2. Note that either Euclidean distance or road
distance could be used to calculate Rr1,r2 . Details of distance
calculation are discussed at section VI-C.

V. ROUTES RECOMMENDATION

In this section, we present a formal description of the
proposed recommendation approach UTCL. Fig. 3 depicts the
framework of the proposed approach. First, the processing
of both spatial and temporal domains for metadata collection
are performed. Next, the traffic charges are calculated based
on the historical trajectories and the real-time trajectories.
The first two steps belong to the off-line mining. During the
process of online route recommendation, the traffic force will
be calculated using UTCL as soon as an empty taxi reaches an
intersection. Finally, a recommended road segment connected
with this intersection will be provided. This process is repeated
until the taxi picks up a passenger.
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Fig. 2. Distributions of traffic charges in Xiamen City, China based on Xiamen taxi dataset. The traffic charges at 3:00 are larger and the distribution is
more centralised on some places of interests compared with that at 18:00. The traffic charges are calculated based on historical and recent factors including
potential passengers, rival taxis, traffic conditions and revenue per trip. (a) At 18:00. (b) At 3:00.

Fig. 3. Overview of the routes recommendation system.

A. Spatio-Temporal Processing and Metadata Collection
Metadata collection means to collect and extract useful

statistics information from trajectories, such as the density of
passengers and taxis in a given area. Considering the influence
of spatio-temporal context, two types of work need to be
done before metadata collection, i.e., spatial processing and
temporal processing.

Spatial processing is the first step, which divides a map into
a few smaller regions with comparable areas, and then a grid-
based method processing is conducted. For example, the map
is divided by 0.001 degree of longitude and 0.001 degree
of latitude in the experiment, where each unit is seen as a
region. Grid granularity is very important in spatial processing,
since fine granularity may provide enough meaningful and

Fig. 4. Distribution of traffic charges at 18:00 at the area of Xiamen Railway
Station. Each grid is seen as a region, and has a width of 0.001 degree of
longitude and a length of 0.001 degree of latitude.

distinctive historical information, while coarse granularity may
be short of historical trajectories or unable to capture the local
characteristic of a region. Additional discussions on the influ-
ence on grid granularity will be presented in section VI-F1.

Temporal processing is another important step before meta-
data collection. As discussed in section III, the distribution
of passengers and taxis, and traffic condition of each region
changes over time. Therefore, metadata collection should
base on a pre-defined time division. The influence of the
division of time slots to recommendations will be presented
in section VI-F2.

Once spatial processing and temporal processing are com-
pleted, statistic information on each region and each time slot
can be collected from trajectories. The definition of several
primary metadata are listed below:
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1) The passenger density in region r at time slot t :

Pt,r = |�1| (3)

where �1 = {l|l ∈ O ∧ l.onT ime ∈ t, [l.slon, l.slat] ∈
r}. Here, |�1| means the magnitude of set �1.

2) The average passenger density in all non-zero regions at
time slot t :

Pt =
∑

r∈G Pt,r

|G| (4)

where G is the set of grid regions in the road network,
and |G| stands for the total amount of regions divided
during spatial processing.

3) The average fee of one trip in region r at time slot t :

Mt,r =
∑

p∈�1
p. f ee

Pt,r
(5)

where p is a trip in �1.
4) The density of vacant taxis in region r at time slot t :

Vt,r = |�2| (6)

where �2 = {l|l ∈ T ∧ l.time ∈ t ∧ [l.lon, l.lat] ∈
r ∧ l.occupied = “vacant”}.

5) The density of all taxis in region r at time slot t :

At,r = |�3| (7)

where �3 = {l|l ∈ T ∧ l.time ∈ t ∧ [l.lon, l.lat] ∈ r}.
6) The average speed of all taxis in region r at time slot t :

St,r =
∑

k∈�3
k.speed

At,r
(8)

B. Traffic Charge Storage

The definition of traffic charge is given in this section, using
the notations defined at formula (3) – (8).

Without loss of generality, passengers are defined as positive
charges +©, vacant taxis as negative traffic charges –©, and the
occupied taxi or on- board passenger as neutral charges ©.
And the sign of traffic charge in a region r at time slot t , Ct,r ,
is defined as follows:

sign(Ct,r ) =

⎧
⎪⎨

⎪⎩

+©, Pt,r > Vt,r

–©, Pt,r < Vt,r

©, Pt,r = Vt,r

(9)

where Pt,r , Vt,r are the densities of passengers and vacant
taxies in region r at time slot t . Here we assume one taxi only
serve one passenger at a time, as one positive traffic and one
negative charge nullify each other. The magnitudes of traffic
charge Ct,r is defined as follows:

Ct,r = Pt,r

Pt
× (2 − Vt,r

At,r
)× (1+ St,r

Smax
)× (1+ Mt,r

Mmax
) (10)

The traffic charge is composed of four parts. The first part is
Pt,r
Pt

, which reflects the ratio of passenger density in region
r at t compared to the average level at t . In the second
part Vtr

Atr
is about the taxis, reflecting a positive influence on

passengers, as well as a negative influence on vacant taxis.
(2 − Vt,r

At,r
) indicates that the larger the ratio of vacant taxis

in a region, the less appeal to a vacant taxi outside this
region. It is clear that the density of passengers and taxis is of
vital importance in the calculation on the magnitude of traffic
charge in a region. For the third part, a better traffic condition
( St,r

Smax
) means less time consumption on a trip and more live

trips in a fixed time which may generate more income. Thus,
a better traffic condition can promote the traffic charge of a
region. Last, a region with higher revenue per trip ( Mt,r

Mmax
)

is preferred. For the last three parts, we use ‘2 minus’ and
other measures to maintain the result between 1 and 2 thereby
preventing the undue influence on these three aspects. From
Eq. (10), we see a region with higher traffic charge considered
to have more potential passengers, less rival taxis, better traffic
condition and higher revenue per trip.

Here, the traffic charges extracted from the historical tra-
jectories are called the historical traffic charges, represented
as Ch , containing the historical experience of urban traffic.
Similarly, the traffic charges extracted from the recent trajec-
tories are called the recent traffic charges, represented as Cr ,
containing the real-time changes of urban traffic. As depicted
in Figure 3, we calculate the historical traffic charges and
recent traffic charges respectively and then combine them into
the final traffic charges. The definition of final traffic charges,
represented as C f , is shown as:

C f = w × Ch (ts)+ (1−w)× Cr ( f ) (11)

where w ∈ [0, 1] stands for weight of historical traffic charge,
Ch stands for the historical traffic charge, ts stands for the
corresponding time slot division, 1 − w stands for weight of
recent traffic charge, Cr stands for the recent traffic charge
and f stands for the corresponding update frequency. When
w is equal to 1, the final traffic charge is equal to the historical
traffic charge; when w is equal to zero, the final traffic charge
is equal to the recent traffic charge. For example, if current
time is 8:15 AM, the current time slot is (8:00, 8:30] (if slot
time is set to 0.5 hour). The historical traffic charge would be
calculated on the (8:00, 8:30] time slot over all data, and the
recent traffic charge would be calculated based on the past two
time slots, i.e. (7:00, 7:30], (7:31, 8:00]. The optimal weight
could be tuned to design an efficient recommender method.

C. Integrating Historical and Real-Time Factors

The above steps belong to the off-line mining and the final
traffic charges are stored into the database to calculate the
traffic forces which gives real-time route recommendations.
In this section we discuss the integration of historical and
realtime dynamic factors.

As discussed in section IV-A, a charge would be affected
by all charges in the electrostatic field. Similarly, a taxi
is affected by traffic forces from all regions in the urban
traffic network. Although we define the traffic charges by
grids/regions, this also leads to large amount of computation
if all regions are considered to calculate the traffic force.
In reality, some regions far away from a taxi have little
impact on this taxi. Therefore, it makes little sense to add
up all regions when calculating the attraction to the taxi.
Therefore we define a extended region around the taxi’s current
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region, e.g. 4 square kilometer, while the regions outside of
this extended region would not be considered [23]. The size of
the extended region should be large enough to contain enough
regions that have significant effect. We denote the extended
region of a taxi as M , so each region in M would have a force
of push or pull the taxi so as to lead it to its optimal routes.
Fig. 6(a) depicts the forces between a taxi and regions in M .

As defined in Eq. (10), the traffic charges represent historical
and recent factors such as potential passengers, rival taxis,
traffic conditions and revenue per trip. To integrate the realtime
factors for the recommendation, the current set of vacant taxis
and passengers are also considered for the calculation of traffic
forces. Suppose taxi i is currently located in region r , denote
the set of vacant taxis in r by Xr , and the set of passenger
by Yr . Then every taxi x ∈ Xr would have a push force to
i and every passenger y ∈ Yr would have a pull force to i .
The recommendation server would maintain the sets of vacant
taxis and passengers, which change dynamically overtime.
Fig. 6(b) depicts the forces between a taxi and elements
in Xr and Yr .

D. Combination of Traffic Forces

The concept of traffic force from one region to another is
depicted in Definition 2. Here we use the concept of Attraction
to represent the vectorial sum of all traffic forces that affect a
taxi. The definition of Attraction is given as follows.

Definition 4 (Attraction): Attraction is the aggregated result
of traffic forces produced from other regions and elements
within its current region to a taxi, including both directions
and forces. Attraction on taxi i in region r , which is with an
extended region M , during time slot t could be derived by the
formula as below:

−→
A (r, t) =

∑

r ′∈M

Ct,r ′

Rr ′,r K
×−→e r ′,r (12)

+
∑

x∈X

Ct,r

Vt,r × Ri,x
K
×−→e i,x (13)

+
∑

y∈Y

Ct,r

Pt,r × Ri,y
K
×−→e i,y (14)

where r ′ stands for a region in the extended region M , Vt,r ,
Pt,r are the densities of vacant taxis and passengers in r at
time slot t , and other variables are the same as those in Eq. (2).
The attraction is combined from three parts: (12) is the force
from regions belonging to its extended region, (13) is the force
from vacant taxis, and (14) is the force from passengers.

Fig. 6 illustrates the combination of traffic force corre-
sponding to taxi B in Fig. 5. Taxi B is current located at
region r . Region r1, r3, r5, r7, r8 are in the extended region
M , they would have traffic forces on taxi B . Specially, there
is a “push” force from r3 and a “pull” force from r5, because
from the historical and recent analysis of the traffic charges,
there are vacant taxis in r3 and passengers in r5. And within
region r at current time, there are two other vacant taxis (A, D)
and a passenger (D), all of which would have a force on
B . So finally, the combined force, or called the attraction, is
illustrated in Fig. 6(c).

Fig. 5. Illustration of a taxi in its current region r , and its extended region M.
Arrows are the combined traffic force.

Fig. 6. Illustration of combining traffic forces for a taxi B . The arrows
in red colour in (a) and (b) are the combined forces, and the arrow in pink
denotes the final combined force. (a) Traffic force in M. (b) Traffic force in r.
(c) Combined force.

Fig. 7. An illustration of route recommendation. I1, I2, I3, I4 and I5 stand for
five intersections. S1, S2, S3 stand for three road segments. r1, r2, r3, r4 stand
for four regions. (a) At time t1. (b) At time t2.

We will show how to recommend routes using the calculated
attractions in the next section according to Eq. (12).

E. Route Recommendation

As a vacant taxi cruises on the street, a taxi driver can
make decisions about cruising routes anytime, but can only
take actions at intersection on streets [25]. Therefore, for a
recommendation system, the recommended result should be
given at the same time, exactly the way the proposed method
works. Additional details about the recommendation algorithm
are presented using examples shown in Fig. 7.

Imagine a vacant taxi driver arrives at I1 at time slot t1.
At this moment, he can select to drive along S1 or S2.
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Fig. 8. Illustration of “short-sighted” route recommendation. The combined
force, which is denoted by the red arrow, has a minimal angle with S3, yet
tpath S2→ S4 is a better route because it directs to the direction of the traffic
force.

The proposed algorithm will judge these two choices and
recommend him the most suited one. First, the proposed
algorithm will acquire the traffic charge from the database
and further calculate the attraction. After comparing the

direction of the attraction with the direction of
−−→
I1 I2 and

−−→
I1 I3,

the proposed algorithm will choose the road segment nearest
to the direction as the recommended road segment. Hereby,
the force of attraction, which stands for the attraction degree,
would not be used in the proposed method. Suppose S1 is
the next recommended road segment and the driver arrives at
I3 at time slot t2. The same procedure presented above will
be performed again but with different time slot and region.
As shown in figure 7, S3 is the recommended road segment
this time. The above steps will be under processing until the
driver picks up the next passenger and a new recommendation
process will start as soon as the passenger leaves the taxi. The
recommended road segment is given in Eq. (15):

Srec = argmin
S j

{ϕ(Sj ,
−→
A (r, t)) : Sj ∈ S ∧ S.si = I } (15)

where I stands for the intersection the taxi reaches, Sj is
the road segment started with I , ϕ(Sj ,

−→
A (r, t)) stands for

the angle between the road segment Sj and the traffic
force

−→
A (r, t).

The recommendation is based on the direction of the traffic
force. However, a road segment that has the similar direction
might not necessarily leads to the directed area suggested by
the traffic force in real world road networks. As illustrated
in Fig. 8, the combined force, which is denoted by the red
arrow, has a minimal angle with road segment S3. But path
S2 → S4 would be a better route because it directs to the
direction of the traffic force. To avoid such a “short-sighted”
route recommendation, we add another parameter k to cal-
culate the optimal road segment. Suppose the taxis is at
intersection I , and Sj is a road segment that starts at I , then
we define the set of k-segment routes as W (Sj , k), where a
route Z ∈ W (Sj , k) is a directed sequence of k road segments,
i.e. Z = S1, S2, . . . , Sk , where Z .s = S1.s, Z .e = Sk .e and
Si .e = Si+1.s for 1 ≤ i < k. The angle is rewritten as
ϕ(Sj ,

−→
A (r, t), k):

ϕ(Sj ,
−→
A (r, t), k) = min(

1

k

∑

S∈{Z/Z .S1}
ϕ(S,
−→
A (r, t))),

Z ∈ W (Sj , k) (16)

Here we calculate the average angles between the traffic force
and all possible k-step routes. {Z/Z .S1} means we remove the
first road segment for the average calculation.

F. Algorithm and Complexity Analysis

The recommendation procedure is personalized, since
drivers are located at different locations, as well the attraction
forces are different for each other. From a macro perspective,
this mechanism can prevent sending the same information to
multiple drivers, which may result in localized competition and
a non-equilibrium state. The online recommendation procedure
is depicted in Algorithm 1.

Algorithm 1 Online Recommendation Using UTCL
Input:

lonc, current longitude; latc, current latitude;
Tc, current time; M: the extended region;
C: storage of traffic charges;
w: weight of historical traffic charge;
occupied: taxi’s current status;

Output:
route: recommended route;

1: route← ∅;
2: while taxi is working do
3: update Tc, lonc, latc;
4: while (occupied == f alse) do
5: if (a passenger is picked up by the taxi) then
6: occupied← true;
7: else
8: region← get Region(lonc, latc);
9: intersection← get Intersection(lonc, latc);

10: objects← get Objects(Tc, region);
11: attraction ← get Force(Tc, region, C, M ,

objects, w);
12: rs ← get Recommend(attraction, intersection);
13: route← route + {rs};
14: send route to the driver;
15: end if
16: route← ∅;
17: end while
18: end while

The procedure works when a taxi is working, and the time,
location are periodically updated (line 3). When a taxi drops
off his most recent passenger, it cruises on the street looking
for the next passenger. If a passenger is picked up, the taxi is
occupied and no route recommendation is needed (line 5-6);
else, the algorithm will first acquire the current region, inter-
section, and objects within the currrent region (lines 8-10).
Then it calculates the final traffic force based on the historical
traffic charges, recent charges, and real-time traffic dynamics
as defined at Fig. 6 (line 11). Next, attraction will be calculated
given the position and time according to Eq. (12) (line 12).
Finally, the recommended road segment will be obtained using
the method proposed in section V-E and provided to the driver
(lines 13-14). This process loops until the taxi picks up the
next passenger.

The traffic charges are calculated in the preprocessing phase,
the cost of storage for the charge is n∗k, where n is the number
of grids in the simulation field and k is the number of time
slots within a day. The computation on attraction and routes
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recommendation are real-time. The cost depends on line 11,
where forces on the taxi from extended region and objects
within the region are combined. There are m forces on the
taxi, where m = |M| + |r | is the number of regions in the
extended region M plus the number of objects in region r .
The algorithm iteratively combine two forces into one, and
forms a geometric sequence with scale factor 0.5, so the
computational complexity of the force combination process
is O(2m).

VI. EXPERIMENTAL ANALYSIS

A. Environment Setup

The proposed method is evaluated using the taxi trajectory
data of Xiamen (China) during July 2014, containing about
5,000 taxis and the reporting frequency is 1-3 times per
minute. At the mean time, an associated taxi operation dataset
is also used. Totally, there are over 220 million GPS position
records and 8 million taxi live trips. The dataset is spit up by
two, from July 1st to July 21st being the training set and the
remaining is considered as test set. The region is limited to
[118.066E ,118.197E] × [24.424N ,24.561N] partitioned into
131 × 137 grids with equal intervals. The extended region
M is set to 0.02 degree of longitude and 0.02 degree of
latitude. During data cleaning processing, the GPS records
outside region R and those containing contradictory in time are
removed from the dataset. To evaluate the proposed method,
we use the maps available provided by OpenStreetMap to
build a road network. Totally, 52479 road segments and
49773 intersections are stored in PostgreSQL. Besides, time
slot and the update frequency of traffic charges are both set
to 1 hour. wh is set to 0.8 and 0.2 for wr .

B. Map Matching

After building a road network, it is of vital importance to
locate GPS trajectories into corresponding roads, which is also
called map matching. The purpose of map matching is to inte-
grate the positioning data with the spatial road network data,
to identify the actual way on which the vehicle is traveling
and further to determine the vehicle location on that way.
For each GPS record, the map matching is processed in three
steps: (1) Identifying possible road segments, (2) Identifying
candidate road segments, and (3) Weighing candidate road
segments.

1) Identifying Possible Road Segments: For each GPS
record, it is inefficient to match all possible road segments to
search suitable road segments to the record. Rather, we only
need to identify a few road segments that covers all possible
segments for the GPS record whilst filter others. According
to [31] and [32], GPS location errors can be as large as
100 meters in a city with dense tall buildings and viaducts.
Actually, 100 meters can be roughly regarded as 0.001 latitude
or longitude. Imagine there is a circle of radius 0.001 latitude
or longitude centered at the GPS record, the GPS record can
only reside on the road segments that intersect or tangent to
the circle. From our investigation, 99.27% road segments in
our road network are less than 0.005 latitude or longitude long.
Such a circumstance is described in Figure 9.

Fig. 9. The maximum distance appears when the road segment is tangent to
the circle and the tangent point turns to be the midpoint.

Therefore, we test each road segment on the following
criteria: whether there exists a road segment that meets the
condition that the distance between the endpoint and the GPS
record is less than 0.0027 latitude or longitude long. The GPS
record would not reside on a road segment that fails to meet
this criteria.

2) Identifying Candidate Road Segments: After obtaining
all possible road segments of a vehicle’s GPS record, we need
to identify the candidate road segments satisfying some basic
conditions.

First, we need to check whether the distance between the
road segment and the GPS record is less than the distance
threshold, which is set to 0.001 latitude or longitude as told
before. To calculate the distance between the road segment
and the GPS record, we need to calculate the closest point
on the road segment, which can be achieved by projecting the
location of GPS record onto the road segment. If the projection
point lies on the road segment, the distance between the road
segment and the GPS record turns to be the distance between
the projection point and the GPS record. Otherwise, if the
projection point lies outside the segment, we should calculate
the distances from the GPS record to the road segment’s two
terminal points, and choose the shorter one.

Second, we also need to make sure the difference between
the headings of the road segments and the driving direction is
less than 60◦, a heading difference threshold used in Pfoser’s
work [33]. The direction of road segment can be calculated
using its two terminal points (first and second points). There
are two directions about one road segment, and the smallest
value as the difference between road segment and vehicle
heading is selected. If the difference is less than the threshold,
the road segment will be identified as a candidate road
segment; the road segment is not considered as a candidate
road segment even if the GPS record-Road segment distance
is very short otherwise.

3) Weighting Candidate Nodes: After identifying a set of
candidate road segments for each GPS record, each road
segment is given a weight based on the following two factors:
(1) proximity between the locations of GPS record and the
road segment, (2) similarity between the vehicle heading and
the direction of road segment. Given one GPS record g and
its k candidate road segments S = s1, s1, . . . , sk , the score of
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one candidate road segment si can be computed as:

score(g, si) = θ1
dis (g, si )

0.001
+ θ2

α (g, si )

60◦
(17)

where θ1 and θ2 are weights of proximity about location and
similarity about direction respectively. dis () is the function of
the distance between one GPS record and one road segment,
and α () is the angle difference function between them. After
the score is calculated for each candidate road segment from
the GPS record, the road segment that has the minimum score
is considered as that matched the GPS record on the map.

C. Road Distance Between Regions

As in (2), the traffic force is defined based on the distance
between any two regions. We use the road distance to have
better estimation, i.e. Rr1,r2 is the road distance between two
regions. There are many points within a region, yet we define
Rr1,r2 as the distance between the central intersections in r1
and r2. Given a region r , its central intersection is denoted
by C Ir :

C Ir = argmin
I
{ f (I ) : I ∈ L(r)},

f (I ) = c

|I.num| +
|I.lat − Cr .lat|

r.l
+ |I.lon − Cr .lon|

r.w
(18)

where L(r) denotes the set of intersections in r , c is a constant
integer balancing the value (c = 8), I.num is the number
of road segments that connect to I , C.r is the geometric
central point of the rectangle defined by r , and r.w, r.l are
the width and length of r . So an intersection that connects
with more road segments and is closer to the central point Cr

is preferred to become a central intersection of that region.
Then the distance between region r1 and r2 is defined as:

Rr1,r2 = dist (C Ir1 , C Ir2 ) (19)

where function dist calculates the shortest road distance
between C Ir1 , C Ir2 in the road network. The calculation is
only performed once and the result could be stored as the
metadata.

D. Simulation

To verify the effectiveness of the proposed method,
we selected 50 most active taxis from 8 a.m. to 12 p.m in
the test set. We simulated the moving paths of virtual taxi
drivers from the starting locations of these 50 drivers.

Algorithm 2 presents the pseudocode of the simulation.
Given a taxi and its current position, the positioning infor-
mation is obtained first (lines 3-4). The positioning process
is simplified here, while the specific steps can be found
in section VI-B. If a passenger appears at the current road
intersection at that time, the revenue of this trip will be
obtained and added up as income (lines 6). Next, the travel
time of this trip would also be added and the taxi will move
to the location where the passenger is dropped off (line 7-8).
If there is no passenger in the road intersection, the taxi will
move along the recommended route. First, the final traffic

Algorithm 2 Simulation Algorithm
Input:

lonc: current longitude; latc: current latitude;
Tc: current time; T f : final simulation time;
C: storage of traffic charges;
w: weight of historical traffic charge;
M: extended region of current location of taxi;

Output:
income: the income of a taxi;

1: income← 0;
2: while Tc < T f do
3: region← get Region(lonc, latc);
4: intersection← get Intersection(lonc, latc);
5: if ( f ind Passenger(Tc, intersection)) then
6: income← income+ getTri pMoney();
7: Tc ← Tc + getT ri pT ime();
8: lonc, latc = get O f f Location();
9: else

10: objects← get Objects(Tc, region);
11: attraction ← get Force(Tc, region, C, M,

objects, w);
12: rs ← get Recommend(attraction, intersection);
13: lonc, latc ← moveAlong(rs, intersection);
14: Tc ← Tc + getTravelT ime(rs, Tc);
15: end if
16: end while

charges are calculated using the historical traffic charges and
the real-time objects in the current region (line 10), the attrac-
tion force is calculated (line 11) and the recommended road
segment is received (line 12). The taxi will move along the
recommended road segment and move to the next intersection
(line 13), and the travel time will be calculated and added
(line 14). This simulation ends when the time reaches the final
simulation time (line 2).

E. Evaluation

Beside the ground truth and UTCL, we also conducted some
recommendation methods for the comparison and analysis:

1) HITS [17]: the modified “HITS” model that recom-
mends taxi drivers to regions that are with the highest
profit based on historical dataset.

2) STP [23]: adopts a spatio-temporal profitability map to
guide taxicabs to cruise around most profitable locations.
The map suggests potentially profitable locations to the
taxicab driver, and taxies follow the suggestions of map
to reduce cruising time and thus increase the profit.

3) Random: randomly selects a road segment when meeting
an intersection, which represents the case when no
direction or route guidance are available for drivers.

Fig. 10 shows the probability of earnings between the
ground truth and proposed scheme. Taxis that follow the
recommended routes by UTCL have higher probability to
make higher revenue, about 81 percent of the taxis earns more
than 50 RMB per hour; while only 66 percent of taxis earn
more than 50 RMB per hour with the ground truth. No taxis
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Fig. 10. Comparison of taxis’ earning probability between UTCL and the
ground truth.

Fig. 11. Comparison of average earning of taxis on UTCL, STP, HITS and
randomised method.

in UTCL earn less than 40 RMB per hour, yet in the ground
truth, about 10 percent of drivers earn less than 40 RMB per
hour. In general taxis following the routes recommended by
the proposed method have a better earning probability, which
demonstrate the effectiveness of the proposed method.

Fig. 11 shows the cumulative density probability of driver
earnings of the ground truth, and the average revenues of the
schemes are also indicated on the line. The average average
of the randomized method is 712.4, smaller than that with the
ground truth (i.e. 822.7), indicating that the drivers’ experience
is effective on supporting the selection of cruising routes.
The effectiveness of using a passenger-finding strategy is
shown when compared with the results without a passenger-
finding strategy. The average revenue earned by the taxi with
UTCL is about 976.5, which is among the top 10% of the
taxis, while those in HITS and STP are 843.6 and 904.4
respectively. UTCL has the best performance among the three
recommendation methods. The revenue of taxis has been
increased by more than 8% when using UTCL, which indicate
higher competitiveness of the proposed method.

F. Impact Factor Analysis

1) Partition Granularity: Partition granularities determine
the spatial accuracy on recommendation. Fig. 12 shows the
impact of different partition granularities, where “PG” stands

Fig. 12. Simulation results on different partition granularity. “PG” stands
for partition granularity. “PG=0.001” means each region is partitioned into
0.001 degree of longitude and 0.001 degree of latitude, so does “PG=0.005”
and “PG=0.01”.

Fig. 13. Simulation results on different time slots. “TS” stands for time slot
and “TS=0.5” means time slot is set for 0.5 hour. So does the “TS=1” and
“TS=2”.

for partition granularity. “PG=0.001” means each region is
partitioned into 0.001 degree of longitude and 0.001 degree
of latitude, so does “PG=0.005” and “PG=0.01”. Simulation
results showed that a smaller granularity like PG=0.001 are
more likely to reach a high revenue (i.e. 1000-1300), while
larger granularity tends to get a low revenue (i.e. 0-800).
About 45 percent of taxis earn less than 800 when PG=0.01,
and about 30 percent for PG=0.05, while only 20 percent
of taxis earn within this range. This is mainly because larger
granularity may lead to fewer regions and rougher calculations,
thus resulting in ambiguous recommendation. In simulation
experiments performed, PG=0.01 signifies to divide the map
of Xiamen into 14× 14 grids with an area of nearly 1 square
kilometer, which makes it hard to make a targeted recommen-
dation in such a big area. Nevertheless, partition granularity
should not be too small, as we have presented in section V-A.
Too small granularity may lead to few trajectory data on
each grid and thus affect the recommendation, it also leads
to needless massive consumption on calculations.

2) Time Slots: Time slot determines the temporal accuracy
of recommendation. The differences on time slots are shown
in Fig. 13. We see that the ratio of high revenue taxi drivers
(i.e. 1000-1300) for TS=2 is about the same as that for
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Fig. 14. Simulation results on using or without using traffic condition.

TS=0.5 and TS=1, while the ratio of high revenue taxi drivers
for TS=2 is lower. About 24 percent of taxis earn less than
700 when the time slot is 2 hours, while only 2 percent of
taxis earn less than 600. This is reasonable since smaller
time slot captures more accurate traffic change and thus make
a better recommendation. When the time slot is too large,
e.g. larger than 2 hours, the distribution of traffic conditions
change, and may change from peak period to flat period. This
makes the recommendation outdated, which harms the overall
performance of the recommendation. A time slot of 0.5 hour is
a good estimation on the traffic conditions and charges, which
is a good time division that improves the recommendation
in UTCL.

3) Traffic Condition: As defined in (10), the speed of road
network is considered to calculate the traffic charge. Yet to
study the impact of the traffic condition, we also conduct
the recommendation when the factor of speed is taken away.
Fig. 14 shows the differences with or without the factor of
traffic condition. Compared to UTCL without traffic condition,
the distribution from UTCL is more concentrated in higher
revenue. As we can observe, about 35 percent of taxi drivers
make more than 1000 from the simulation with traffic condi-
tion, whilst only 20 percent of drivers can make that much
for simulation without traffic condition. The factor of speed
leads to more accurate estimation of the charge calculation
and hence the recommended routes. Regions that have large
speed means less time consumption on one trip. Thus, given
a fixed time slot (e.g. a day in the simulation), a taxi has
more chance to pick up more passengers through saving
time consumption while heading to regions with good traffic
condition. Simulation results demonstrate that it is necessary
to take traffic condition into consideration for the calculation
of traffic charges.

4) Ratio Between Historical and Recent Charges: The final
traffic charges are composed of the historical traffic charges
and the recent traffic charges. w ∈ [0, 1] stands for the weight
of historical traffic charge, 1 − w stands for the weight of
recent traffic charge, which is calculated based on the past
two time slots. Fig. 15 shows the impact of the ratio w.
In this experiment, given the condition that 0.5 hour for the
time slot, the best outcome is achieved when w is set to 0.8.
The probability of UTCL when w = 0.8 on the high revenue

Fig. 15. Comparison on different ratio between historical charges and
recent charges. w = 0.8 means the final traffic charges are composed of 80%
historical traffic charges and 20% recent traffic charges. w = 1 means to use
the historical charges alone; w = 0 means to use the recent charges alone.

Fig. 16. Impact of K on the average income of drivers in UTCL.

recommendation section, e.g. greater than 1000, is higher than
those when only using historical trajectories (w = 1) or recent
trajectories (w = 0) alone. About 35 percent of taxi drivers
make more than 1000, while only 16 and 10 percent of
taxi drivers make more than that amount of revenue. This
indicates the effectiveness of integrating the recent traffic
charges for the route recommendation. Recent charges stands
for the most temporal closed factors that affects the current
recommendations on routes. An appropriate ratio between
them can reflect the distribution of traffic more accurately,
thus make a better recommendation.

5) Impact of K : In Coulomb’s law the force is inverse
proportional to the squared distance. Yet in Urban Traffic
Coulomb’s law, we adopt a more general form. As defined in
Eq. (2), the traffic force is inverse proportional to K powering
the distance, i.e. RK

r1,r2
, where Rr1,r2 is the distance between

region r1 and r2. In the experiment we varied K to see its
impact on the performance in Fig. 16. When K is small,
e.g. 0, the traffic force has no relation with the distance,
so passengers, whether they are near or far away, would have
the similar impact on taxis. When K is larger, the traffic force
would be dominated by the distance. Both of these cases do
not accord with the relations between taxis and passengers.
UTCL gains the best performance of the average income of
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drivers when K is [1.5, 2]. This accords with the Coulomb’s
law in physics, where K is set 2.

6) Number of Steps Looking Forward: To avoid the “short-
sighted” route recommendation problem, UTCL looks k road
segments forward to calculate the optimal road segment as
described in Eq. (16). In the experiment, we varied k from
1 to 5, and found that k ≥ 3 works well in the real-world
road network. The ratio when UTCL directs taxis to the right
road segments is 96.21% when K is 1, and the ratio grows to
1.0 when K is set 3.

VII. CONCLUSION AND FUTURE WORKS

In this paper we coin the concept of Urban Traffic
Coulomb’s Law to model the relationship between taxis and
passengers in urban cities, based on which a new framework
of recommending cruising routes is proposed. Taxis and
passengers are viewed as different types of charges. Traffic
charges and attractions are calculated for each region at
different time slots according to Urban Traffic Coulomb’s
Law, then the cruising routes for drivers are computed by
comparing the difference between attraction force and the
headings of adjacent road segments. Different from other route
recommendation methods, the relationship among taxis and
passengers are fully taken into account in the proposed algo-
rithm, e.g. the attractiveness between taxis and passengers and
the competition among taxis. Besides, the recent trajectories
and real-time traffic dynamics are also taken into account for
recommendation, while most existing methods are focused on
the historical trajectories alone. Experimental results show that
the proposed method can effectively provide taxi drivers with
better routes. Compared to other methods, drivers with this
proposed method have better performances, where drivers’
income increases more than 8 percent.

There are some directions as future work for this
research. Cruising is not the only way to find passengers,
and waiting at temporary places, e.g., taxi stops, may be
an efficient option compared to cruising around, which is a
situation that may be taken into account. Another direction
is, the waiting time and preferences of passengers are also
important factors to be included in the recommendation algo-
rithm. Further studies based on the Urban Traffic Coulomb’s
Law is promising, we are optimistic that it would increase the
drivers’ income as well as improve the overall traffic efficiency
and benefit the living conditions in urban cities.
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