
Hierarchical Reinforcement Learning-based
Mobility-aware Content Caching and Delivery

Policy for Vehicle Networks ⋆

Le Zhang1, Yongxuan Lai1,3(�), and Fan Yang2

1 School of Informatics / Shenzhen Research Institute, Xiamen University, Xiamen
361005, China

zhangle@stu.xmu.edu.cn, laiyx@xmu.edu.cn
2 School of Aerospace Engineering, Xiamen University, Xiamen 361005, China

yang@xmu.edu.cn
3 School of Mathematics and Information Engineering, Longyan University, Longyan

364012, China

Abstract. Mobile Edge Computing (MEC) has been regarded as a
promising technology to satisfy the growing demand for resource-intensive
applications in vehicle networks. Content caching and delivery, a criti-
cal problem in MEC, has attracted much research attention in the past
decade. However, most existing caching schemes in the vehicle network
scenario still confront two challenges: 1) High mobility of vehicles re-
sults in unstable connectivity; 2) Fairly massive state spaces of exist-
ing schemes have become their obstacles to good scalability. To address
these challenges, we propose a hierarchical reinforcement learning (HRL)-
based mobility-aware content caching and delivery policy for vehicle net-
works. First of all, we formulate the caching and delivery problem as a
Markov decision process (MDP) problem. Our aim is to minimize the
time-averaged transmission cost in the vehicle network scenario. To ad-
dress the curse of dimensionality, we decompose the joint optimization
of content caching and delivery into the vehicle side and RSU side sub-
problems. DDPG and Double-DQN are applied to address these two sub-
tasks. Furthermore, an LSTM-based location prediction module is built
to mine the mobility patterns of vehicles. Experimental studies and anal-
ysis, which are conducted on a real-world dataset, demonstrate that our
approach outperforms other baseline schemes in terms of transmission
cost and convergence speed.

Keywords: mobile edge computing · vehicle network · content caching
and delivery · hierarchical reinforcement learning · deep deterministic
policy gradient.

⋆ This work is partially supported by Longyan Industry-Education Integration Project
of Xiamen University (20210302) and the Natural Science Foundation of Guangdong
(2021A1515011578).

2 L. Zhang et al.

1 Introduction

The past decade has witnessed the widespread adoption of smart vehicles across
Intelligent Transportation Systems (ITS). Meanwhile, the wide commercial roll-
out of fifth-generation (5G) networks has facilitated a wide range of innovative
vehicle applications, such as in-car entertainment, autonomous driving and live
traffic monitoring [9]. However, there are some challenges in providing these
applications with high quality of experience (QoE) in Vehicle Networks (VN).
First of all, the emerging content will consume an extremely large data volume,
such as video streaming and Virtual Reality/Augmented Reality (VR/AR). Sec-
ondly, many multimedia applications also involve live interaction between users,
which requires low-latency content delivery [23]. These challenges are difficult to
solve in the traditional centralized cloud-based computation. Fortunately, Mo-
bile Edge Computing (MEC) has emerged as a promising paradigm to support
these resource-demanding applications with stringent latency and reliability re-
quirements. MEC moves computing and storage resources to close proximity to
mobile users, such as Base Stations (BSs) and Road Side Units (RSUs), so that
the latency to users will be remarkably reduced [1, 4]. At the same time, cache
nodes at the edge of networks can cache popular contents in advance, which
alleviates strain on the backhaul links.

Content caching and delivery is a critical problem in mobile edge computing,
which has attracted much research attention in recent years. Generally speaking,
the storage space of edge nodes is often limited, which necessitates the careful
design of an efficient content caching and delivery policy. Most existing caching
schemes can be classified into two categories: reactive caching and proactive
caching [8]. Firstly, Least Recently Used (LRU), Least Frequently Used (LFU),
and their variants are examples of reactive caching. These caching schemes are
driven by simple statistics of request history and mine user request patterns to
guide the cache decision. They are easy to implement and widely used in Content
Delivery Networks (CDNs). However, they are not suitable for the features of
vehicle network scenarios, such as high mobility and dynamic content popularity.
In contrast, proactive caching schemes predict content popularity in advance and
cache the most popular contents which are possible to be accessed in the recent
future. In proactive caching schemes, it is of vital importance to accurately
predict content popularity. A large number of existing studies in the broader
literature have investigated machine learning-based proactive caching schemes
by utilizing deep learning [13,19], reinforcement learning [12,15,23] and federated
learning [22], etc.

The advent of autonomous driving and demand for improved road safety
and in-car entertainment have led to the development of vehicle-to-everything
(V2X) technology and vehicle networks (VN). The integration of vehicle net-
work and MEC will greatly promote the sensing and computing capability of
vehicle network at the network edge. Despite recent advancements in Machine
Learning(ML)-based proactive caching, utilizing ML approaches for edge caching
in vehicle networks still confronts the following two challenges: 1) High mobility:
High movement of vehicles results in unstable connectivity, and vehicles may

HRL-based Content Caching and Delivery for Vehicle Networks 3

not have enough time to download the entire requested content during the time
staying in the area of one edge node. In order to improve the quality of expe-
rience, cache schemes must be mobility aware and enable multiple cache nodes
to collaborate; 2) Scalability: Most of existing studies use end-to-end reinforce-
ment learning techniques, which makes their state spaces very large and impairs
their potential to scale. Specifically, the state space expands exponentially as
the number of linked vehicles rises, delaying the model’s convergence. This is
so-called the curse of dimensionality [2].

In past decades, Hierarchical Reinforcement Learning (HRL) has been re-
garded as one of the promising technologies to alleviate the curse of dimen-
sionality and scale reinforcement learning to the long-horizon tasks [10]. HRL
decomposes a long-horizon(i.e., large state and action space) reinforcement learn-
ing task into a hierarchy of subproblems or subtasks. This inspired us to come
up with our own solution for content caching and delivery for vehicle networks.
Different from the existing schemes of HRL-based caching [7, 11], our scheme
focuses on the edge caching in vehicle network scenarios and applies a divide-
and-conquer strategy to reduce the dimensions. In this paper, we propose a
hierarchical reinforcement learning(HRL)-based mobility-aware content caching
and delivery policy for vehicle networks, which has better scalability and uni-
versality. This caching scheme aims to minimize the time-averaged transmission
cost in the scenario of vehicle networks with high mobility and dynamic content
popularity. The content caching and delivery problem is formulated as an MDP
problem and decomposed into vehicle side and RSU side subproblems. Deep de-
terministic policy gradient (DDPG) and double deep Q-network (Double-DQN)
are applied to solve these two subproblems. The major contributions of this
paper are as follows:

– We propose an HRL-based mobility-aware content caching and delivery pol-
icy for vehicle networks with high mobility and dynamic content popular-
ity. The joint optimization of content caching and delivery is modeled as a
Markov decision process (MDP) problem. This framework aims to minimize
the time-averaged transmission cost in the scenario of vehicle networks.

– Borrowing ideas from HRL, we decompose the joint optimization of content
caching and delivery into vehicle side and RSU side subproblems. DDPG
and Double-DQN are used to address these two subtasks. Furthermore, a
Long Short Term Memory(LSTM)-based location prediction module is built
to mine the mobility patterns of vehicles. Through these efforts, we hope to
achieve better scalability and generality.

– Experimental studies and analysis are conducted on a real-world taxi tra-
jectory dataset, which demonstrates that our approach outperforms other
baseline schemes in terms of transmission cost and convergence speed.

The rest of this paper is organized as follows. Section 2 summarizes the
related work of this paper. Section 3 presents the system model. Section 4 for-
mulates the content caching and delivery problem and reformulates it as an
MDP problem. In Section 5, we introduce the detailed hierarchical reinforce-

4 L. Zhang et al.

ment learning-based mobility-aware content caching and delivery policy for ve-
hicle networks. Experimental studies and analysis are provided in Section 6.
Finally, Section 7 concludes the paper and presents some future directions.

2 Related Work

Content Caching and Delivery in MEC. Mobile edge computing provides
cloud computing and caching capabilities at the edge of cellular networks. A
large number of recent works have been reported to investigate content caching
and delivery in mobile edge networks. Jiang et al. [5] proposed a cooperative con-
tent caching and delivery framework to minimize average content downloading
latency. The content caching problem is formulated as an integer-linear pro-
gramming problem and solved by using the subgradient method. The content
delivery policy is formulated as an unbalanced assignment problem and solved
by using Hungarian algorithm. Yao and Ansari [21] jointly optimized the content
placement and storage allocation for Internet of Things (IoT) to minimize the
total network traffic cost. Two heuristic algorithms were proposed in order to
reduce the computational complexity of the problem. Sun et al. [16] designed a
cooperative content caching approach among small cells, for which the tradeoff
between content delivery latency and storage cost was investigated.

Content Caching and Delivery in Vehicle Networks. The vehicle network,
which is a promising paradigm to support diverse vehicular applications, has
drawn much research attention with a wide range of works on content caching
and delivery. In [3], a vehicle-based distributed storage scheme via local vehicle-
to-vehicle (V2V) communications was proposed to cope with the vehicle mobility
issue. Structured redundancy via erasure coding was also introduced in order to
combat the volatile V2V links. In order to deal with the challenges of high
mobility and privacy, Yu et al. [22] proposed a mobility-aware proactive edge
caching scheme based on federated learning to leverage the private training data
distributed on local vehicles for predicting content popularity. Context-aware
adversarial autoencoder (C-AAE) was introduced to predict the highly dynamic
content popularity.

Content Caching and Delivery with DRL. In the past decade, with the
continuous enhancement of computing power brought by graphics processing
units (GPUs), deep learning (DL) has aroused great interest and extensive re-
search with fruitful outcomes in academia. Deep reinforcement learning (DRL),
which combines the advantages of deep learning and reinforcement learning, is
regarded as a powerful tool to solve sequential decision making problems. As a
result, much effort has been made to utilize DRL to deal with content caching
and delivery in vehicle networks. Qiao et al. [12] formulated the joint content
caching and delivery optimization problem as a double timescale Markov deci-
sion process (DTS-MDP), and deep deterministic policy gradient (DDPG) was

HRL-based Content Caching and Delivery for Vehicle Networks 5

leveraged to obtain a suboptimal solution. However, its state space was fairly
large and the method did not have good scalability. In [23], Zong et al. employed
an ensemble of constituent caching policies and a DRL agent was trained to
adaptively select the best-performing policy to control the cache. But the single
cache node was its downside and the migration to the vehicle network scenario
was difficult as a result. In [15], a QoE-driven edge caching method for the IoV
was proposed to solve the RSU caching optimization problem. A class-based user
interest model was established, which was more suitable for systems with a large
number of small files. A deep reinforcement learning method was designed to
address the QoE-driven RSU cache update issue effectively.

Most of the above-mentioned studies are end-to-end reinforcement learning
approaches, which leads to their state spaces being fairly massive and having
poor scalability. As the number of connected vehicles grows, the state space
increases exponentially, which results in slow convergence of the model. A more
systematic and theoretical analysis is required for the curse of dimensionality in
content caching and delivery problem. This motivates us to propose a hierarchical
reinforcement learning(HRL)-based mobility-aware content caching and delivery
policy for vehicle networks, which has better scalability and universality.

3 System Model

In this section, we propose the content caching and delivery framework in vehicle
networks including network model, communication model, mobility model and
request model.

3.1 Network Model

We consider a general model of mobile edge computing in vehicle networks with
different types of edge caching nodes, including a macro base station (MBS),
several road side units (RSU) and content requesting vehicles (CRV), as shown
in Figure 1. Let N = {0, 1, ..., N} represent the index set of edge caching nodes,
in which 0 is the index of MBS and {1, 2, ..., N} is the index set of RSUs. Let K =
{1, 2, ...,K} denote the index set of CRVs to make requests to access contents.
The index set of all available contents is denoted by F = {1, 2, ..., F}. We assume
that the MBS is the centralized content provider and has the abundant storage
capacity to cache all available contents. Furthermore, each RSU n ∈ N and
each CRV k ∈ K are equipped with a limited caching storage capacity, which is
represented by Mn and Lk respectively.

The MBS serves all the RSUs with all the contents and the connections
between the MBS and RSUs use optical fibers. Vehicles traverse the coverage
areas of several RSUs and each CRV communicates with only one RSU through
wireless links at the same time. The system runs over an infinite period of time,
which is divided into slots, denoted as t = 0, 1, 2, During the content caching
and delivery process, a CRV will require a desired content (e.g., navigation map
update, video streaming, etc.). Then, the local cache of CRV will be checked first

6 L. Zhang et al.

MBS

RSU

CRV

Fig. 1. The network model consists of a macro base station (MBS), several road side
units (RSU) and content requesting vehicles (CRV).

to see whether the requested content is cached. The cache state of each content
for CRV k is denoted by CVk = {CV f

k ∈ {0, 1}|f ∈ F}, where CV f
k = 0 means

that content f is not cached and CV f
k = 1 means that content f is cached.

The CRV can receive immediate service if the content has already been cached.
If not, the request will be sent to the RSU to which the CRV is connected. In
the same way, the cache of RSU will be checked whether the requested content
is cached. The cache state of each content for RSU n is indicated by CRn =
{CRf

n ∈ {0, 1}|f ∈ F}, where CRf
n = 0 means that content f is not cached and

CRf
n = 1 means that content f is cached. If the content is located in the cache

of RSU, it will be transmitted to the CRV with a certain communication cost.
We call it a cache hit that the requested content could be available in the cache
of CRV or RSU. Otherwise, the CRV has to fetch the desired content from the
MBS (i.e., a cache miss), which will spend a higher communication cost. To sum
up, the object of this caching framework is to provide content delivery services
for smart vehicles with the communication cost as lower as possible.

Notably, the CRV may not be able to fetch all parts of the content in one time
slot due to high mobility. Let REk(t) denote the remaining size of the content
requested by CRV k in the time slot t. When the CRV enters the coverage area
of another RSU, the remaining part of the requested content will be transmitted
subsequently.

3.2 Communication Model

In wireless communication, we consider that MBS and RSU allocate the or-
thogonal spectrum resources to CRVs such that there is no interference between
wireless communications. The signal-to-noise ratio (SNR) between edge caching
node i and CRV j at time slot t is given by

γi,j(t) =
Pigi,j

σ2 +
∑

v∈K\{j} Pigi,v
, ∀i ∈ N, ∀j ∈ K (1)

HRL-based Content Caching and Delivery for Vehicle Networks 7

where Pi is the transmission power of edge caching node i, gi,j is the channel
gain between edge caching node i and CRV j, σ2 is the power of additive white
Gaussian noise.

Based on the assumption that the available spectrum resource is denoted
as Wmbs Hz for MBS and W rsu

n Hz for RSU n, wi,j(t) can be allocated as the
continuous bandwidth resource to CRV j by edge caching node i. According to
Shannon Theory, the data rate to fetch a segment of content f between edge
caching node i and CRV j is given by [14]

ri,j(t) = wi,j(t) ∗ log2 (1 + γi,j(t)) , ∀i ∈ N, ∀j ∈ K (2)

where wi,j(t) is the bandwidth resource allocated to CRV j and γi,j(t) is the
SNR at time slot t.

3.3 Request Model

The request of CRV k is denoted by Qk(t) = f ∈ F, where k ∈ K,F = F∪{0}. If
there is no new request of CRV k, then Qk(t) = 0. The vehicle will not submit a
new request until the last request is served. We assume that the request history
of one CRV follows a Markov chain and the next request only depends on the
last request. We adopt the same vehicle request model as [17], where the request
transition probability from content i to j of CRV k is given by

pi,j =

P0, i ∈ F, j = 0

(1− P0)
1

jβ∑F
j′=1

1

j′β
, i = 0, j ∈ F

(1− P0)
1
H , i ∈ F, j = (i+ h) mod (F + 1), h ∈ {1, 2, . . . , H}

0, otherwise.
(3)

To be specific, P0 indicates the probability that a vehicle does not have a new
request in the current slot (j = 0). When the vehicle does not have a request in
the last slot (i = 0), the request model depends on the content popularity, which
follows a Zipf-like distribution, and β indicates the parameter of the distribution.
Furthermore, each content i ∈ F has a set of H neighboring contents indicated
as Hi = {f ∈ F : f = (i + h) mod (F + 1), h ∈ {1, 2, . . . , H}}, where H
is the number of neighboring contents. The transition probability from content
i ∈ F to its neighboring contents j ∈ Hi is modeled as a uniform distribution.
In other words, the vehicle randomly selects a content from neighbor contents
as the next request. Otherwise, the transition probability from i ∈ F to other
contents j /∈ Hi is zero.

For convenience of understanding, the notations used in this paper are sum-
marized in Table 1.

8 L. Zhang et al.

Table 1. Summary of key notations.

Notation Description
N index set of edge caching nodes(MBS, RSUs)
K index set of content requesting vehicles(CRVs)
F index set of all available contents
Mn caching storage capacity of RSU n ∈ N
Lk caching storage capacity of CRV k ∈ K
CRf

n(t) cache state of each content f for RSU n in time slot t

CV f
k (t) cache state of each content f for CRV k in time slot t

REk(t) remaining size of the content requested by CRV k in time slot t
ri,j(t) data rate to fetch a segment of content f between cache node i and CRV j
Qk(t) request of CRV k at time slot t
pi,j request transition probability from content i to j of CRV k
Lock(t) region index where CRV k is located at time slot t

∆CRf
n(t) cache update action of RSU n for content f

∆CV f
k (t) cache update action of CRV k for content f

WM0,k(t) allocated bandwidth to CRV k by MBS 0
WRn,k(t) allocated bandwidth to CRV k by RSU n
ci,j(t) transmission cost from edge caching node i to CRV j at time slot t

4 Problem Formulation

In this section, we formulate the joint optimization of content caching and de-
livery as a Markov decision process (MDP) problem. The detailed definitions of
MDP, including state space, action space and reward, will be given.

4.1 State Space
At the beginning of each time slot, the agent will receive environment state
information, including request content index, caching state, remaining size of
content and vehicle locations. Specifically, the state space contains the following:
1. Qk(t) ∈ F: request of CRV k at time slot t
2. CRf

n(t) ∈ {0, 1}: cache state of each content f for RSU n at time slot t
3. CV f

k (t) ∈ {0, 1}: cache state of each content f for CRV k at time slot t
4. REk(t) ≤ Smax: remaining size of the content requested by CRV k in time

slot t, where Smax denotes the max size of all contents
5. Lock(t) ∈ {1, 2, ..., L}: location of CRV k at time slot t, which is represented

by the region index the CRV is driving in. There will be more details about
transport regions in Section 6.

The joint state space of the MDP process is denoted by s(t) ∈ S:

s(t) = {Q(t),CR(t),CV(t),RE(t), Loc(t)}. (4)

Thus, the size of the whole state space is |S| = (F +1)K×2(N+K)F ×SK
max×

LK , which grows exponentially with the number of vehicles K and has poor
scalability.

HRL-based Content Caching and Delivery for Vehicle Networks 9

4.2 Action Space

After receiving the current environment state, the agent will decide which con-
tents should be stored to which cache nodes and how to allocate the bandwidth
resource, which would be done to the environment in order to achieve a lower
communication cost. To be specific, the action space contains the following:

1. ∆CRf
n(t) ∈ {−1, 0, 1}: RSU cache update action, where -1 means deleting

the content from the cache, 0 refers to maintaining the content cache states
and 1 means inserting the content into the cache

2. ∆CV f
k (t) ∈ {−1, 0, 1}: CRV cache update action, which has the same mean-

ing as ∆CR(t)
3. WM0,k(t) ≤Wmbs: allocated bandwidth to CRV k by MBS 0
4. WRn,k(t) ≤W rsu

n : allocated bandwidth to CRV k by RSU n

The joint action space of the MDP process is denoted by a(t) ∈ A:

a(t) = {∆CR(t),∆CV(t),WM(t),WR(t)}. (5)

Thus, the size of the whole action space is |A| = 3(N+K)F × (Wmbs)K ×
(W rsu

n)NK . Same as above, the size of action space grows exponentially with the
number of vehicles K.

4.3 Reward

The objective of this content caching and delivery policy is to provide content
delivery services for smart vehicles with the communication cost as lower as
possible. Based on this assumption, we design the following cost function to
represent the transmission cost from edge caching node i(i.e., MBS and RSUs)
to CRV j in the scenario of vehicle networks:

ci,j(t) = pbi ∗min (REj(t), ri,j(t) ∗∆t) , ∀i ∈ N, ∀j ∈ K (6)

where pbi means the price per unit bandwidth for edge caching node i, which is
higher for the MBS and lower for RSUs on account of different distances to CRVs.
We assume that the service provider adopts resource-usage-based pricing [12]. If
the remaining size of the content in one time slot (i.e., REj(t)) is smaller than
the maximum amount of data transmitted in one time slot (i.e., ri,j(t) ∗∆t), it
will be billed according to the actual amount of data transmitted.

Further, the objective function can be given by the time-averaged transmis-
sion cost:

min lim
T→∞

1

T

T∑
t=1

N∑
i=0

K∑
j=1

ci,j(t). (7)

Considering that general reinforcement learning algorithms are designed to
maximize cumulative reward and we need to minimize the transmission cost, we

10 L. Zhang et al.

apply the negative exponential function of the transmission cost as the reward
function:

R(t) = e−
∑N

i=0

∑K
j=1 ci,j(t). (8)

According to the Bellman equation, we can obtain the optimal policy for
environment state s:

µ∗(s) = argmax
a∈A

[
R+

∑
s′∈S

Pr (s′ | s, a)V (s′)

]
(9)

where s and a are the current state and action at time slot t, s′ is the next state
at time slot t+ 1 and V (∗) is the value function of state.

5 Hierarchical Reinforcement Learning-based Caching
and Delivery

In this section, we propose the hierarchical reinforcement learning (HRL)-based
mobility-aware content caching and delivery policy for vehicle networks, in order
to reduce the dimensions of state and action space and achieve better scalability
and universality. In addition, we apply the LSTM algorithm to mine the mobility
patterns of vehicles for the purpose of caching potential popular contents in
advance.

According to the problem formulated in Section 4, the state space and action
space are fairly massive and grow exponentially with the number of vehicles,
which results in poor scalability. Convergence will take a long time if we sim-
ply apply traditional reinforcement learning algorithms, such as Q-learning and
DQN. This leads to greatly reduced model scalability and actual application
value. To address the curse of dimensionality, we apply the hierarchical rein-
forcement learning and divide the joint optimization of content caching and
delivery into two subproblems (i.e., vehicle side and RSU side), as shown in
Figure 2.

joint optimization of content caching and delivery

Subproblem 1 :
vehicle side policy

for given ∆CR

Subproblem 2 :
RSU side policy

for given ∆CV,WM,WR

HRL-based policy

Fig. 2. The framework of hierarchical reinforcement learning(HRL)-based policy.

HRL-based Content Caching and Delivery for Vehicle Networks 11

Subproblem 1: vehicle side policy.

For given cache action in RSUs ∆CR(t)

µ∗
V (s) = argmax

∆CV(t),WM(t),WR(t)

[
R+

∑
s′∈S

Pr (s′ | s, a)V (s′)

]
. (10)

Subproblem 2: RSU side policy.

For given cache action in CRVs {∆CV(t),WM(t),WR(t)}

µ∗
R(s) = argmax

∆CR(t)

[
R+

∑
s′∈S

Pr (s′ | s, a)V (s′)

]
. (11)

Note that the agent decision for cache action ∆CR(t) in RSU side only affects
the state CR(t) , which has no influence on the vehicle side. In other words,
adjusting the RSU side policy has much less influence on the vehicle side. Hence,
we first optimize the vehicle side policy in subproblem 1 with RSU side policy
fixed. We will apply DDPG algorithm to solve subproblem 1 in Section 5.1.
Then, we will optimize the RSU side policy in subproblem 2 with vehicle side
policy fixed and use Double-DQN algorithm to address subproblem 2 in Section
5.2.

5.1 Vehicle Side Policy

In this section, we fix the RSU side policy and optimize the vehicle side policy. In
this case, the state space is simplified to s(t) = {Q(t),CV(t),RE(t), Loc(t)} and
the action space is simplified to a(t) = {∆CV(t),WM(t),WR(t)}. Accordingly,
the size of state space decreases to (F + 1)K × 2KF × SK

max × LK and the
size of action space decreases to 3KF × (Wmbs)K × (W rsu

n)NK . Considering the
massive action space, we choose the Deep Deterministic Policy Gradient (DDPG)
algorithm [6] to address this MDP problem. Different from the value-based DQN,
DDPG is policy-based (i.e., directly output actions) and absorbs the advantages
of DQN, which makes it more suitable for high-dimensional continuous action
spaces. The architecture of DDPG is shown in Figure 3. In the following parts,
we will discuss the detailed modules of DDPG.

Actor Network µ Update. Different from stochastic policy, the actor network
µ learns a deterministic policy a = µ(s|θµ) with the actor network parameter
θµ. The input is the current state s and its output is the deterministic action
µ(s|θµ), which is used to update the actor network parameter with the output
of critic network Q(s, a):

∇θµµ = ∇aQ(s, a)∇θµµ(s|θµ). (12)

12 L. Zhang et al.

s

S'
Actor Target

μ’

Actor μ Critic Q

Critic Target

Q’

Update the Actor NetworkUpdate the Actor Network

Update the Critic Network

Fig. 3. The architecture of DDPG.

Critic Network Q Update. The critic network Q is responsible for evaluating
policies based on the action-value function Q(s, a) with the critic network param-
eter θQ. The input is the current state s and the actual action at = µ(s|θµ)+N
where N denotes the Ornstein-Uhlenbeck noise [18] that functions as the explo-
ration of policy. The output is the value function Q(s, a) which is used to update
the actor network parameter and calculate the TD error yt − Q(s, a) where yt
is the target value generated by critic target network Q′. The critic network
parameter θQ will be updated by minimizing the loss:

Loss = MSE(Q(s, a), yt) (13)

= MSE
(
Q(s, a), R+ γQ′

(
s′, µ′(s′|θµ

′
)
))

. (14)

Target Networks Update. The actor target network µ′ and critic target net-
work Q′ are applied to calculate the target value yt. Their architectures are
consistent with the primary networks. However, they are updated slowly com-
pared to the primary networks, which makes the learning performance stable
and robust. Exponentially weighted moving average (EWAM) scheme is applied
to update the target networks’ parameters θµ

′ and θQ
′ :

θµ
′
← τθµ + (1− τ)θµ

′
(15)

θQ
′
← τθQ + (1− τ)θQ

′
(16)

where τ ∈ [0, 1] is the weight parameter.

Experience Replay. DDPG draws on the experience replay of DQN. It con-
structs a replay memory to store a series of historical experiences [s, a, c, s′] to
avoid sample-correlation during the training process. The network parameters
can be updated by randomly choosing mini-batch samples from replay memory.

HRL-based Content Caching and Delivery for Vehicle Networks 13

5.2 RSU Side Policy

In this section, we fix the vehicle side policy and optimize the RSU side policy.
In this case, the state space is simplified to s(t) = {Q(t),CR(t), Loc(t)} and
the action space is simplified to a(t) = {∆CR(t)}, which are only related to
RSUs. The dimension of state space decreases to (F + 1)K × 2NF × LK and
the dimension of action space decreases to 3NF . As can be seen, the dimensions
of state and action are reduced tremendously compared to the vehicle side and
the action space is discrete. For the purpose of accelerating the convergence, we
adopt the Double-DQN algorithm to solve subproblem 2.

Experience

Replay

Environment
Training DNN

Q

Target DNN

Q'

(s, a, r, s')

(s,a) s'

s

r

Q(s, a; θ)

Synchronize

every N steps

Fig. 4. The architecture of the DQN algorithm. The Double-DQN shares the same
architecture and deep network as the DQN algorithm and differs from the DQN only
in the calculation of the target value.

Double-DQN [20] is the variant of the DQN algorithm and has the same
architecture and deep network as the DQN algorithm, as shown in Figure 4.
In the DQN scheme, the deep neural network (DNN) Q is applied to estimate
the state-action reward Q(s, a). If we simply use one DNN, there are two key
challenges in the training step: 1) The target is unstable, where the objective
function for optimizing the DNN parameters depends on these parameters them-
selves; 2) The training samples are strongly correlated instead of independent,
which makes the gradient descent towards a deterministic direction and there is
a considerable probability that the training process will not converge. To address
these challenges, DQN takes two measures accordingly: 1) Freezing target DNN
Q′: The parameters of target DNN Q′ are fixed during several training steps

14 L. Zhang et al.

until the parameters of DDN Q are synchronized to the target DNN Q′, in order
to keep the learning objective steady; 2) Experience replay memory D, which
consists of interactions between the client and the environment. In each training
step, DQN samples a batch of data from the experience memory as the training
data and calculates the target value as follows:

yt =

{
Rt if episode terminates at step t + 1

Rt + γmaxa′ Q′ (st+1, a
′; θ−) otherwise.

(17)

The loss function is defined as the mean square error: (yt −Q(s, a))
2.

However, due to the max operation, the state-action value Q(s, a) would be
overestimated and the entire evaluation is overestimated accordingly since we
always tend to select the action argmaxa′ Q′ (st+1, a

′; θ−). To avoid this upward
bias, Double-DQN decouples the calculation operation by applying the training
DNN Q to select actions, while employing the target DNN Q′ to evaluate actions.
The only difference between Double-DQN and DQN is the calculation of the
target value, which alleviates the overestimation and instability:

yt =

Rt if terminate at step t + 1

Rt + γQ

(
st+1, argmax

a
Q′(st+1, a; θ); θ

−
)

otherwise.

(18)

6 Experiments

In this section, we first introduce the experiment setup and the baseline schemes.
Then the performance of our proposed scheme is evaluated on a real-world
dataset and simulation results are given.

6.1 Experiment Setup

The schemes are implemented in Python 3.6 and experiments are run on a
desktop computer with AMD R5 3600X CPU, 3.8GHz, 16G RAM under Ubuntu
18.04.5 LTS. Furthermore, we use the TensorFlow platform to implement the
DDPG and Double-DQN algorithm of the content caching and delivery policy.
The main parameters employed in the simulations are summarized in Table 2.

We apply the taxi trajectory dataset of the Xiamen island to simulate the
mobility of vehicles, which consists of latitudes, longitudes and GPS times, etc.
The road network of Xiamen island is used for the simulation, which contains
24,750 road nodes and 3,234 road segments. This road network covers the range
of [118.0660E,118.1980E] × [24.4240N,24.5600N]. The Xiamen island is divided
into 16 transport regions and a day is divided into 24 time slots.

Furthermore, we apply Long Short-Term Memory (LSTM) algorithm, which
has proven to be an effective solution to time series prediction problems, to
preprocess the trajectory data and mine vehicle mobility patterns before being

HRL-based Content Caching and Delivery for Vehicle Networks 15

Table 2. Simulation Parameters.

Parameter Value/Description
Number of RSUs 16
Number of CRVs [30, 60]
Number of contents [10, 40]
Size of contents [20, 80]MB
Storage Capacity of RSU 200MB
Storage Capacity of CRV [80, 120]MB
Bandwidth of MBS, RSUs [5, 20]MHz
Transmission Power of MBS 35dBm
Transmission Power of RSU 33dBm
Power of Gaussian Noise -95dBm

fed to the RL agent. Specifically, we apply 24 units of LSTM to predict the
location in the next time slot. At the beginning of each time slot, the vector
of the previous latitudes and longitudes would be given to the input of LSTM.
The output of LSTM is the latitude and longitude where vehicles may be in this
time slot. Then the latitude and longitude will be transferred into the index of
transport region, which is served as the location of CRVs at time slot t (i.e.,
Lock(t) in Section 4.1).

6.2 Baseline Schemes

For performance comparison, we present the baseline schemes as follows:

– Random: The contents cached in RSUs and CRVs are randomly selected
from all of the available contents.

– Least Recently Used (LRU): When the cache capacity of RSU or CRV is
already full, the least recently used content will be evicted. In other words,
the longest unrequested content will be removed.

– Least Frequently Used (LFU): When the cache capacity of RSU or CRV is
already full, the least frequently used content will be evicted. In other words,
the content with the smallest request frequency will be removed.

– Double Time-Scale DDPG (DTS DDPG) [12]: The cooperative caching prob-
lem is modeled as a double time-scale Markov decision process (DTS-MDP).
The content caching decision is made on the large time-scale while the joint
decision of vehicle scheduling and bandwidth allocation is implemented on
the small time-scale. The DDPG algorithm is implemented to obtain a sub-
optimal solution.

6.3 Simulation Results

Impact of the Number of Contents. As shown in Figure 5, we compare
the transmission cost for different numbers of contents. We vary the number of
contents from 10 to 40. The capacity of CRVs is 100MB and the number of CRVs

16 L. Zhang et al.

Fig. 5. Impact of the number of contents
on the transmission cost.

Fig. 6. Impact of the number of contents
on the cache hit ratio.

is 50. It can be observed that the transmission costs of five approaches all obvi-
ously increase with the increase of the number of contents. This is because the
more contents there are, the more cache replacement is needed, which causes an
increase in the transmission cost. As expected, the proposed HRL-based caching
policy performs better with various numbers of contents compared to other base-
line schemes. The line chart in Figure 6 demonstrates that the cache hit ratio has
a decreasing trend for all caching schemes as the number of contents increases.
Our proposed approach still performs better than other baseline schemes and
the advantage is even greater when the number of contents increases.

Fig. 7. Impact of the capacity of CRVs on
the transmission cost.

Fig. 8. Impact of the capacity of CRVs on
the cache hit ratio.

Impact of the Capacity of CRVs. Then, we compare the transmission cost
and cache hit ratio for different cache capacities of CRVs. We change the cache
capacity of CRVs from 80MB to 120MB. As we can see in Figure 7, the increasing
cache capacity has a positive impact on the transmission cost. The transmission
cost decreases with the increase of cache capacity, especially for our proposed
HRL-based caching policy. This is reasonable because a larger cache capacity

HRL-based Content Caching and Delivery for Vehicle Networks 17

enables CRVs to cache more popular contents simultaneously, which will reduce
the number of wireless communications to the MBS or RSUs. In Figure 8, as the
cache capacity grows, our proposed approach is the best scheme and the Random
scheme has the worst performance. This is because the Random scheme does not
consider the content popularity and has no ability to predict the next request.

Fig. 9. Impact of the number of CRVs on
the transmission cost.

Fig. 10. Impact of the number of CRVs on
the cache hit ratio.

Impact of the Number of CRVs. In addition, we change the number of CRVs
to compare the transmission cost and the cache hit ratio. We change the number
of CRVs from 30 to 60 and the number of contents is set to 100. The capacity of
CRVs is set to 100MB. Figure 9 illustrates that our approach achieves the best
performance and the gap between HRL-based caching policy and DTS DDPG
policy becomes larger with the increasing number of CRVs. This reveals that our
approach has better scalability than DTS DDPG and is more suitable for large-
scale vehicle network scenarios. In Figure 10, the cache hit ratio decreases with
the increasing number of CRVs. This is because the cache capacity is limited and
unable to satisfy all requests of vehicles. Furthermore, it is worth noting that
the LRU and LFU schemes have similar performances, as they are both driven
by simple statistics of request history and mine user request patterns to guide
the cache decision.

The Convergence Performance. Figure 11 shows the convergence perfor-
mance of our proposed HRL approach and other baseline schemes. The number
of contents is fixed as 100. The capacity of CRVs is set to 100MB and the
number of CRVs is 50. It can be observed that for HRL-based caching pol-
icy and DTS DDPG policy, the total content transmission cost of each episode
decreases rapidly and gradually maintains a relatively stable value with the
increase of training episodes. Meanwhile, there are no significant changes occur-
ring in the transmission cost with the increase of episodes for Random, LRU and
LFU schemes. This is consistent with the fact that they are not reinforcement

18 L. Zhang et al.

Fig. 11. The convergence performance.

learning-based schemes. In addition, the HRL-based caching policy converges at
about 400 episodes, which is obviously faster than DTS DDPG. This shows that
it has better scalability from another aspect.

7 Conclusion

In this paper, we focus on the main challenges in vehicle networks, including
high mobility and scalability. An HRL-based mobility-aware content caching
and delivery policy for vehicle networks is proposed to achieve better scalability
and generality. The joint optimization of content caching and delivery is de-
composed into two subproblems. DDPG and Double-DQN are adopted to deal
with sequential decision problems. Experimental results demonstrate that our
approach reduces the dimension of state space and outperforms other baseline
schemes in terms of transmission cost and convergence speed. Our approach still
has huge room for improvement. In the future, we will continue to improve our
scheme in terms of more accurate location prediction and collaboration between
edge caching nodes.

References
1. Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge comput-

ing: A survey. IEEE Internet of Things Journal 5(1), 450–465 (2018).
https://doi.org/10.1109/JIOT.2017.2750180

2. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforce-
ment learning. Discrete Event Dynamic Systems 13(1), 41–77 (2003).
https://doi.org/10.1023/A:1022140919877

3. Hu, B., Fang, L., Cheng, X., Yang, L.: Vehicle-to-vehicle distributed storage in
vehicular networks. In: 2018 IEEE International Conference on Communications
(ICC). pp. 1–6 (2018). https://doi.org/10.1109/ICC.2018.8422220

HRL-based Content Caching and Delivery for Vehicle Networks 19

4. Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing
- a key technology towards 5g. ETSI white paper 11(11), 1–16 (2015)

5. Jiang, W., Feng, G., Qin, S.: Optimal cooperative content caching and delivery pol-
icy for heterogeneous cellular networks. IEEE Transactions on Mobile Computing
16(5), 1382–1393 (2017). https://doi.org/10.1109/TMC.2016.2597851

6. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Sil-
ver, D., Wierstra, D.: Continuous control with deep reinforcement learning.
In: 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (2016),
http://arxiv.org/abs/1509.02971

7. Majidi, F., Khayyambashi, M.R., Barekatain, B.: Hfdrl: An intelligent dynamic co-
operate cashing method based on hierarchical federated deep reinforcement learn-
ing in edge-enabled iot. IEEE Internet of Things Journal 9(2), 1402–1413 (2022).
https://doi.org/10.1109/JIOT.2021.3086623

8. Narayanan, A., Verma, S., Ramadan, E., Babaie, P., Zhang, Z.: Deep-
cache: A deep learning based framework for content caching. In: Proceed-
ings of the 2018 Workshop on Network Meets AI ML. pp. 48–53 (2018).
https://doi.org/10.1145/3229543.3229555

9. Nomikos, N., Zoupanos, S., Charalambous, T., Krikidis, I.: A survey on reinforce-
ment learning-aided caching in heterogeneous mobile edge networks. IEEE Access
10, 4380–4413 (2022). https://doi.org/10.1109/ACCESS.2022.3140719

10. Pateria, S., Subagdja, B., Tan, A.h., Quek, C.: Hierarchical reinforcement
learning: A comprehensive survey. ACM Comput. Surv. 54(5) (jun 2021).
https://doi.org/10.1145/3453160

11. Qian, Y., Wang, R., Wu, J., Tan, B., Ren, H.: Reinforcement learning-
based optimal computing and caching in mobile edge network. IEEE
Journal on Selected Areas in Communications 38(10), 2343–2355 (2020).
https://doi.org/10.1109/JSAC.2020.3000396

12. Qiao, G., Leng, S., Maharjan, S., Zhang, Y., Ansari, N.: Deep reinforce-
ment learning for cooperative content caching in vehicular edge comput-
ing and networks. IEEE Internet of Things Journal 7(1), 247–257 (2020).
https://doi.org/10.1109/JIOT.2019.2945640

13. Qin, Z., Xian, Y., Zhang, D.: A neural networks based caching scheme
for mobile edge networks: Poster abstract. In: Proceedings of the 17th
Conference on Embedded Networked Sensor Systems. p. 408409 (2019).
https://doi.org/10.1145/3356250.3361961

14. Rappaport, T.S., et al.: Wireless communications: principles and practice, vol. 2.
prentice hall PTR New Jersey (1996)

15. Song, C., Xu, W., Wu, T., Yu, S., Zeng, P., Zhang, N.: Qoe-driven
edge caching in vehicle networks based on deep reinforcement learn-
ing. IEEE Transactions on Vehicular Technology 70(6), 5286–5295 (2021).
https://doi.org/10.1109/TVT.2021.3077072

16. Sun, Y., Chen, Z., Liu, H.: Delay analysis and optimization in cache-enabled
multi-cell cooperative networks. In: 2016 IEEE Global Communications Conference
(GLOBECOM). pp. 1–7 (2016). https://doi.org/10.1109/GLOCOM.2016.7841723

17. Sun, Y., Cui, Y., Liu, H.: Joint pushing and caching for bandwidth utilization
maximization in wireless networks. IEEE Transactions on Communications 67(1),
391–404 (2019). https://doi.org/10.1109/TCOMM.2018.2858791

18. Szepesvári, C.: Algorithms for reinforcement learning. Synthesis lec-
tures on artificial intelligence and machine learning 4(1), 1–103 (2010).
https://doi.org/10.2200/S00268ED1V01Y201005AIM009

20 L. Zhang et al.

19. Tsai, K.C., Wang, L., Han, Z.: Mobile social media networks caching
with convolutional neural network. In: 2018 IEEE Wireless Communica-
tions and Networking Conference Workshops (WCNCW). pp. 83–88 (2018).
https://doi.org/10.1109/WCNCW.2018.8368988

20. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-
learning. In: Proceedings of the AAAI conference on artificial intelligence. vol. 30
(2016). https://doi.org/10.1609/aaai.v30i1.10295

21. Yao, J., Ansari, N.: Joint content placement and storage allocation in c-rans
for iot sensing service. IEEE Internet of Things Journal 6(1), 1060–1067 (2019).
https://doi.org/10.1109/JIOT.2018.2866947

22. Yu, Z., Hu, J., Min, G., Zhao, Z., Miao, W., Hossain, M.S.: Mobility-aware
proactive edge caching for connected vehicles using federated learning. IEEE
Transactions on Intelligent Transportation Systems 22(8), 5341–5351 (2021).
https://doi.org/10.1109/TITS.2020.3017474

23. Zong, T., Li, C., Lei, Y., Li, G., Cao, H., Liu, Y.: Cocktail edge caching: Ride
dynamic trends of content popularity with ensemble learning. In: IEEE INFO-
COM 2021 - IEEE Conference on Computer Communications. pp. 1–10 (2021).
https://doi.org/10.1109/INFOCOM42981.2021.9488910

