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Abstract—The flexible transit service reflects a trend of
demand on the flexibility and convenience in urban public
transport systems, within which the vehicle scheduling and
passenger insertion are two challenging issues. Especially, finding
the optimal solution for a flexible transit system can be viewed
as an extension of the traveling salesman problem which is
NP-complete. Yet most of the existing research mainly focuses
on one aspect, i.e. route planning, stop selection or vehicle
scheduling, where a combined integration and optimization of
the whole system is largely neglected. In this paper, we pro-
pose a data-driven flexible transit system that integrates the
origin-destination insertion algorithm and the milp-based (mixed-
integer linear programming) scheduling scheme. Specifically,
stops are mined from the historical datasets and some stops act
as backbone stops that should be visited by the vehicles; and a
heuristic backbone-based origin-destination insertion algorithm
is proposed to schedule the routing path of vehicles, where the
time loss caused by the optimal insertion positions is calculated
for the vehicles to decide whether to accept the requests or
not when constructing a path for the flexible routes. Moreover,
a vehicle scheduling model based on milp is proposed to minimise
the gap between the passenger flow and available seats. The
proposed flexible transit systems are simulated in real-world taxi
datasets, and experimental results show that the proposed flexible
transit system can effectively increase the delivery ratio and
decrease the passengers’ waiting time compared with existing
methods.

Index Terms—Flexible transit system, data-driven route
scheduling, heuristic origin-destination insertion, mixed-integer
linear programming.
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I. INTRODUCTION

ITH the development of mobile-oriented wireless net-

works and technologies, in recent years there has been
increasing research on improving the flexibility and availability
of urban public transportation systems [1], [2], [3], [4], [5].
According to the service mode, urban public transportation
systems can be roughly divided into the fixed and flexible
transit systems [6], [7]. The fixed transit services have fixed
routes and fixed service schedules, which are more common
and have already been operated for more than a century. The
flexible transit service, however, is a more recent innovation
of service driven by the development of transit technologies,
mobile communications, and big data technologies. It reflects
a trend of flexibility and convenience in urban public transport
systems. Users could subscribe and order a transit request,
and the transportation system would fulfil this request by
dynamically scheduling the trips and vehicles through wireless
communications and back-end data processing [5], [8], [9].
This brings about the concept of Flexible Bus and Flexible
Vehicle scheduling.

Compared with the fixed transit system that contains fixed
vehicles and routing lines, the flexible vehicle has several
advantages: 1) the transit lines are flexible according to the
distribution of requests and passengers. The lines and stops
change accordingly with the demands, and vehicles can avoid
stops or areas that are without boarding or alighting activities;
2) the number of vehicles serving the transit routes and the
time interval between sequential vehicles are dynamically
adjusted according to time and requests; 3) the stops are
flexible and could be optimized to be located to places that
are most convenient for the passengers. In this way, passengers
could walk shorter distances to reach the stops to be picked up,
and their waiting time could also be reduced. These two factors
are critical for the comfort of passengers [10]. In this way, the
overall efficiency of the vehicle company and the quality of
service could both be improved. Flex bus or flex vehicles [6],
[11], [12], [13], [14] solve the imbalance of spatial passenger
flow in the suburban areas or other lower populated places.
But we found that such flexible mode of transportations is
also needed in urban scenarios, as the passenger flow is largely
spatially and temporally imbalanced.

However, the vehicle scheduling and passenger insertion
are two challenging issues for the flexible transit system.
The problem of finding optimal solution for a flexible transit
system, also known as the Dial-A-Ride Problem (DARP) [15],
[16], can be viewed as an extension of the traveling salesman
problem. It is NP-complete, which involves calculating an
optimum journey for visiting a number of predetermined nodes
on a network. Existing research on flexible public transport
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provides methods on the route planning [17], [18], stop
selection [19] and vehicle scheduling [20], [21]. Yet they only
focus on one aspect of the problem, which lacks a combined
optimization of the whole problem. Also, in most of the exist-
ing approaches, the datasets of vehicles and passengers are not
well used and integrated into the flexible transit system, which
deters the overall optimization of the flexible transit system.

In this paper, we propose a data-driven flexible transit
system that integrates the origin-destination insertion algo-
rithm and the milp-based (mixed-integer linear programming)
scheduling scheme. We define factors related to the service
area, slack ratio of traveling, and passengers’ pick up time
window, and take them into account for the algorithm design.
The proposed demand-responsive traveling scheme assumes a
time-dependent road network model for the estimation of the
operating cost, and models the vehicle scheduling as a Mixed-
Integer Linear Programming problem. The major contributions
of this paper are as follows:

o We model the flexible transit system and define several

concepts for the system based on trajectory datasets.
The historical trajectory data are clustered to identify
and generate a series of popular candidate stops called
backbone stops. The service area, flex route, and the slack
ratio and etc. are also formalized and defined.

« We propose a heuristic backbone-based origin-destination
insertion algorithm to schedule the routing path of vehi-
cles. The algorithm integrates the historical patterns of the
request datasets to efficiently construct a path for the flex
route, and calculates the time loss caused by the optimal
insertion position of origin and destination of new request
to decide whether to receive the request.

o« We propose a vehicle scheduling model based on milp
to minimise the gap between the passenger flow and
available seats. An objective function that represents the
resource utilization in milp is adopted to build the vehicle
scheduling model.

« We combine the origin-destination insertion algorithm
and the milp-based scheduling into an integrated scheme,
and conduct extensive simulations to verify the effective-
ness of the scheme. Experimental results show that the
proposed flexible transit system can effectively increase
the delivery ratio and decrease the passengers’ waiting
time compared with existing systems.

The rest of the paper is structured as follows: section II
describes the related work; section III introduces some prelim-
inaries and defines the model; section IV presents the detailed
modelling of the flexible vehicle transit system, which includes
flexible route scheduling, optimal path of flex route calcula-
tion, and origin-destination insertion; section V describes the
environmental setup and analyzes the simulation results, and
finally section VI concludes the paper.

II. RELATED WORK

In this section we review four categories of related works,
and position our work in the research community.

A. Demand-Responsive Transit Service

Demand-responsive transit service is an alternative travel
method to personal vehicles, carpool/vanpool and regular

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

transit service. It is comprised of a number of customer
requests that need to be served door-to-door or curb-to-curb
by a set of vehicles [1], [2].

One important issue in demand-responsive transit service
is to devise a real-time matching algorithm that determines
the best vehicle (taxi, cab, vehicle) to satisfy incoming ser-
vice requests. Dijoseph et al. [22] proposed a mathematical
model to optimize the social and fiscal sustainable opera-
tion of a feeder bus system considering realistic network
and heterogeneous demand. Ma er al. [23] proposed a taxi
searching algorithm using a spatio-temporal index to quickly
retrieve candidate taxis that are likely to satisfy a user
request. The algorithm checks each candidate vehicle and
inserts the query’s trip into the schedule of the taxi that
satisfies the query with minimum additional incurred travel
distance. Based on [23], Ma er al. [8] reported a real-
time taxi-sharing system based on the mobile-cloud architec-
ture. Drivers and passengers exchange services and demands
using an application installed on their smart phones, and
the taxi that minimizes the increased travel distance of the
ride request would be selected to pick up the new passen-
ger. Gomes et al. [24] designed a heuristic approach that
involves the construction of a feasible route through a greedy
randomized procedure, followed by a local search phase,
and a Decision Support System was also embedded in the
simulation [25]. Zhu ef al. [26] proposed a path planning
strategy that focuses on a limited potential search area for
each vehicle by filtering out requests that violate passenger
service quality level, and studied the joint transportation and
charging scheduling for public vehicle systems to balance the
transportation and charging demands, ensuring the long-term
operation [27].

B. Flexible Transit and Customized Vehicle

Flexible Transit service is firstly adopted in low-demand
areas (e.g. the suburbs of a city and industrial parks). The
demand for public transport is relatively low and distributed.
To cut down the operation cost and to increase the degree of
passenger satisfaction, flexible transit service adds flexibility
to transit routes and schedules. The vehicle routes, vehicle
schedule, vehicle stops, or vehicle types could be changed
by the operator; and the overall system cost could be sig-
nificantly reduced by effectively integrating conventional and
flexible services in comparison with conventional or flexible
services [13]. Recently, a fully flexible transit system such as
the DIDI mini-vehicle system has been brought into market
in Beijing and Chengdu, China. The DIDI mini-vehicle is a
seven-seat car without a fixed route, and it would pick up
the passengers who send requests to the system in realtime.
One main drawback of the mini-vehicle is that it cannot
pick up many passengers or provide transit over long ranges.
Martinez et al. [6] presented the formulation of a new
optimization problem designated as the express mini-vehicle
problem. It clusters small groups of clients with compatible
boarding/exiting points in time and space for a new type of
urban mobility service.

Recently, the concept of customized vehicle is introduced
and operated in many large and medium-sized cities. The
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operational activity of a customized vehicle is planned by
aggregating space—time demand and similar passenger travel
demands. The first customized vehicle was implemented in
Beijing in October 2013, and 287 customized bus lines
have been implemented in Beijing since December 2015 [7].
Ma et al. [7] proposed an improved immune genetic algorithm
to solve the model with regard to the problems associated with
the operation of customized vehicles, such as stop selection,
line planning and timetables. However, they only used some
demand data or passenger flow data for the simulation. The
impact of demand data on the designing is absent from
these discussions. Mahrsi et al. [28] proposed two approaches
to cluster smart card data to extract mobility patterns in a
public transportation system. Ma et al. [14] proposed a data
mining method to identify travel patterns for individual transit
riders using a large smart card dataset. Nourbakhsh er al. [12]
proposed a structured flexible-route transit system where the
bus tubes form a “grand” structure that includes a grid
tube network that provides double coverage to passengers
in the central part of the city, and a hub-and-spoke tube
network that provides a single coverage in the peripheral part.
Boyer et al. [29] proposed a method to deal with the Flexible
Vehicle and Crew Scheduling Problem. It aimed for high
quality and fast to compute solutions for resources (vehicles
and drivers) assignment to cover timetables generated at the
tactical level, and adopted a mixed-integer linear programming
model and a variable neighborhood search for this prob-
lem. Repoux et al. [30] proposed a type of semi-autonomous
transportation system that consists of convoys composed of
one human-driven lead vehicle guiding several autonomous
small capacity trailers. The trailers can detach from a convoy
and travel autonomously in a protected environment before
attaching later to another convoy.

C. Vehicle Routing Problem With Pickup and Delivery

The flexible vehicle network design can be formulated as
a vehicle routing problem with pickup and delivery [31].
The objective could be either minimizing the operation
cost, maximizing satisfied demand, or maximizing the qual-
ity of service [16]. These objectives are optimized sepa-
rately or simultaneously. Given the objectives and constraints,
the vehicle routing problem is usually formulated as the
mixed-integer programming model with routing and schedul-
ing variables [32]. For instance, Cordeau et al. [31] introduced
a mixed-integer programming formulation of the problem and
used a new valid inequalities for the dial-a-ride problem.
The VRPPD is NP-hard since it is the generalization of
Vehicle Routing Problem [33]. So for instances with a large
number of requests, heuristics or metaheuristics approaches
are adopted to deal with the large-scale real-life applications.
Dondo et al. [17] proposed a two-phase heuristics algorithm
to deal with the instance with a large number of passenger
requests, where Phase I aims to identify a set of cost-effective
feasible clusters while Phase II assigns clusters to vehicles
and sequences them on each tour by using the cluster-based
milp formulation. Zhu ef al. [18] proposed a heuristic prece-
dence constrained origin-destination insertion algorithm for

the public vehicle system to minimize vehicles’ total travel
distance with service guarantee such as low detour ratio.
Sun et al. [34] developed a mixed integer non-linear model for
optimizing multi-terminal customized bus service in an urban
setting. According to the estimated spatio-temporal passen-
ger demand, the objective total cost, consisting of supplier’s
and users’ costs, is minimized subject to capacity and time
window constraints. Wang et al. [35] studied the last-mile
problem that concerns the provision of travel services from
the nearest public transportation node to a passenger’s home or
other destination. An exact mixed-integer programming (MIP)
model and feasible heuristic approaches are developed and
implemented to evaluate the system’s performance.

D. Vehicle Scheduling

Some research has been done on setting the departure
interval when scheduling the vehicles. Lee et al. [20] mainly
analyzed the relationship between departure interval and pas-
senger flow demand, and proposed an optimization method
of vehicle scheduling based on the delay of departure inter-
val, so as to reduce the probability of vehicle overload and
other situations. The problem of the best vehicle scheduling
mode is also solved by establishing models. Zhu et al. [36]
optimized the sum of the operating cost of vehicle company
in a whole day and the cost of passengers waiting for the
car and the transfer. And under the premise of reasonable
assumptions, they established an optimization model of the
vehicle departure interval. Zhang et al. introduced the comfort
of passengers in the vehicle scheduling optimization model
in [37], which is based on the full consideration of the
vehicle company operating costs and the passengers’ waiting
costs. Tan et al. [38] made a multi-object genetic algorithm
optimizing model, including the passengers and vehicle com-
panies, and used the genetic algorithm’s global optimization
search to deal with the operate vehicles on one vehicle line,
obtaining the optimal solution of vehicle departure interval.
Ma [39] put forward a hybrid departure scheduling model for
different vehicle models of the same vehicle line, which could
be solved by a genetic algorithm. Tephan et al. [40] mainly
aimed at optimizing the operation cost of public transport
companies, and established the timetable model of public
transport based on the factors such as passenger waiting cost
and vehicle empty seat punishment, and solves the model to
obtain the optimal vehicle schedule. Hoo and Ong et al. [21]
mainly considered the impact of urban traffic congestion on
vehicle scheduling. An optimization model based on vehicles
and other vehicles was proposed. The effectiveness of the
model for reducing traffic congestion is verified by simulation
experiments.

E. Positioning of Our Work

Demand-responsive transit service could be abstracted as a
member of the general class of the Dial-a-Ride Problem [15],
[16], which focuses on scenarios of planning schedules for
vehicles, subject to the time constraints on pickup and delivery
events.
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Different from the above mentioned research [6], [11], [12],
[13], [14], [29], the proposed scheme adopts a data-driven
approach for the flexible scheduling of vehicles. The differ-
ences lie in three aspects: 1) in most of the existing research
the terminal stations are predefined and given as external
parameters, while we adopt a data-driven approach to deduce
these parameters. For instance, the stations and stops are mined
from real-world datasets and could be adjusted according
to real-time requests. Also, the mobility or travel patterns
could be beneficial to understand the variability of urban
travel behavior and facilitating network design. But analyses
of existing works are all based on dataset from fixed route
transits. In this research we conduct the clustering algorithms
on the real-world origin-destination datasets of taxis, which
are more likely to be replaced by the flexible vehicles and
mini-vehicle systems. 2) at existing research the stops are
either fixed or decided by ad hoc requests, both of which
lack a degree of flexibility. In our approach, all the stops are
mined from the datasets and are defined as candidate pick-up
locations. Vehicles would visit the backbone stops to collect
the patterned or predicted requests, and would only visit part of
the candidate stops to collect the predicted or ad hoc requests.
In this way, both the static patterned requests and dynamic
ad hoc requests could be handled efficiently and effectively;
3) in previous research, the route scheduling and path routing
were investigated separately. Our framework integrates the
flexible route scheduling and optimal path routing, where a
data-driven approach is adopted based on the real-world OD
datasets. And existing schemes mainly considered how to
meet the requests from passengers, yet the utilization of seats
was largely neglected. In this paper, the proposed scheduling
scheme aims to minimise the gap between the demand and
supply of seats, and the number of allocated vehicles could be
customized and dynamically adapted according to the demand;
4) travel time variability would significantly affect the routing
and scheduling of flexible public transport. Our approach is
able to deal with the impact of variability of travel time as well
as the distribution of passenger and vehicle arrivals. Vehicles
travel with different speeds at different time spans when
passing different road segments, and our data-driven approach
could capture the pattern and evolve with the requests and
travelling time by adjusting the locations of stops and the
scheduling of vehicles.

Also, while most of the previous flexible transit systems
are adopted in the suburban area or other lower populated
places, our study shows that flexible mode of transportation is
feasible at urban scenarios and is able to handle the spatially
and temporally imbalanced passenger flow.

III. MODEL DESCRIPTION

In flex-route transit service, vehicles travel among stations
while responding to demands. A vehicle, denoted by ¢, follows
the following two basic rules to provide the public transit
service: 1) while traveling along route u — v, ¢ receives on-
demand requests within its service area. A request might be
accepted or rejected by the vehicle; 2) if the vehicle accepts a
request, it travels to the place and picks up the rider; else,
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it sends a reject message to the rider. In this section we
introduce some concepts and definitions of this model.

A. Stations and Stops

Vehicles pick up and drop off demand responsive riders at
stops, which are temporary locations between station u and v.
We denote the set of all possible stops as E.

Both stations and stops could be predefined, or extracted
from historical trajectories. In this research we adopt a data-
driven strategy which identifies stations and stops through
clustering the OD datasets.

B. Flex Route

Symbol r(u, v, t) denotes a route from station u to station v
starting at the scheduled departure time ¢. When a vehicle is
assigned to route r(u, v, t), it travels along path from u to v.
We denote the path from u to o through the shortest path by
u — v, and its traveling time is denoted by 7 (r). Yet a vehicle
along the route would respond to riders’ requests, so it would
go to pick up the riders. The actual travelling path is denoted
by u < v, and its actual running time is denoted by at (r).
Also, a route has a scheduled running time r¢ (r), which means
the vehicle along route r should arrive v before the scheduled
time rz(r). The following formula holds:

tt(r)y <at(r) <rt(r) (1)

Here we assume the times t7(r), at (r), rt(r) take a predefined
time slot as the unit. A time slot is denoted by U and it could
be 5 or 10 minutes. The actual running time would increase
as new requests are inserted into the route. So a request would
be rejected when, if it is accepted, the actual running time is
larger than the scheduled time.

C. Slack Time
Slack time is denoted by s7(r) and defined as follows:
st(ry=rt(r) —tt(r) 2)

It is the extra time to serve on-demand requests within the
service area of the route. Also, the slack ratio is denoted by a:

st(r)
o =
tt(r)
In this study we assume a > 0 is a predefined parameter for

all the routes in the flex transit system. The running time could
be calculated by the following formula:

rt(r)y=[tt(r) = (1 +a)] 4)

where [x] denotes the ceiling of the x in unit time slot.

3)

D. Request

A request is denoted by req(t, 0, d, w), where ¢ is the time
when the request is submitted, o is the pickup location, d
is the dropoff location, and w is the constraint time window
for the pickup. A request might either be accepted or rejected
by the vehicle.
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QO unvisited stop

3% destination of request
~L real travel path

ap accept request
oh rejected request

Fig. 1. Illustration of a flex route u — v. The vehicle travels to pick up
demand-responsive riders, and drop them to station or stops that are nearest
to their destinations.

E. Service Area

Service area is usually represented by an extended rectangle
area along path u — v. The width of service area defines how
far away from the standard route a vehicle may deviate to pick
up or drop off passengers. Fig. 4 illustrates a flex route u — v
and its service area.

FE. Operation Policies

The vehicles are not required to follow a specific route
and could have a different route from time to time. The only
constraint in the service is that all flex routes are required to
start and end at stations, and depart and arrive within their
scheduled running time.

We assume riders get on and off vehicles at the departure
and destination stations. They also issue demand-responsive
requests so that they can get on and off vehicles at some
predetermined locations. We call these locations the dynamic
stops, which are extracted from the trajectories logs. Request
req(t,o,d,w) would be transformed to req(t,o’,d’, w),
where o', d’ are the nearest dynamic stops to locations o, d.
The flex route system would calculate whether a request is
compatible with a route. A request req(t, o, d, w) is compat-
ible with a route r if it meets the following conditions:

t +w(., o) e ruw; 5)
cost(path(r)y qa) < rt(r) (6)

where [, is the current location of vehicle, w(l., o) is the time
cost of traveling from /. to o', path(r)y 4 is the path after
inserting o’ and d’ on route r. Condition (5) means the vehicle
should travel to o’ to pick up the rider on its constraint time
window w, condition (6) means the total traveling time of the
path after inserting o/, d’ should be within the running time of
route r, i.e. rt(r).

The flex route system would accept a request if the request
is compatible with the route. Then the system would send an
“accept” message to the rider and guide the rider to walk to
o' for the pickup. And the vehicle would drop off the rider
at d’, where the rider could walk to his/her destination. If the
request is not compatible with the route, the system would
send a “reject” message to the rider immediately.

~
o J
( Flexible Route Scheduling )
\ exible Route Schedulin )
\ )

Data Preprocessing

‘/Optimal Paths Calculatioﬁ\
L for Routes J

(ﬁéaltime Requests Insertid‘r\‘
L for Paths J

Fig. 2. Main steps of the data-driven flexible vehicle system.

IV. FLEXIBLE VEHICLE MODELLING

In this section, we present the detailed description of
the flexible vehicle system which consists of 4 steps: the
data preprocessing, the flexible route scheduling, the optimal
path calculation, and the request insertion (Fig. 2). The data
preprocessing step is described in the next section, while
the metrics that evaluate the designed transit service are first
introduced.

A. Performance Metrics

We aim to study the feasibility of a public vehicular system
that provides another public transportation method other than
the vehicle or responsive taxies. So in this study we use
the sharing amplifier (sa), rider delivery ratio (dr), and the
average walking distance (wd) as three main metrics for the
performance measures.

The sharing amplifier sa is defined as follows:

sa = ZCEF [l((,‘) (7)

Drepl(ro,rd)
where D is the set of successfully delivered requests,
[(r.o,r.d) is the distance of the shortest path from the origin
r.o to the destination r.d, F is the set of vehicles, and ¢(c) is
the total traveling distance of vehicle c. sa actually represents
the average number of passengers sharing the vehicle in the
whole trip. The rider delivery ratio (dr) is calculated as:

|D|

r=—

IR|

where | D] is the number of successful deliveries, |R| is the

number of all requests. The average walking distance wd is
calculated as:

®)

> cpl(ro,r) +1(r.d, r.d)
|D|

wd =

©)

where 7.0, r.d are the real pickup and dropoff locations for
request r.

Other factors such as the average waiting time and detour
ratio are also important indicators of the QoS (quality of
service) of passengers. We would discuss them at the experi-
mental analysis.

Authorized licensed use limited to: Xiamen University. Downloaded on December 05,2022 at 02:27:22 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6
TABLE I
MAIN NOTATIONS IN THE PAPER
(u,0, 1) a route from station u to station v starting at the
scheduled departure time ¢
tt(r) (minute), travelling time of r(u, v, t)
at(r) (minute), actual running time of r(u, v, t)
rt(r) scheduled time of 7(u, v, t)
st(r) (minute), slack time of r(u,v,t)
o slack ratio of a route r(u,v,t)
K number of subareas
U length of time slot unit
C capacity of seating and standing riders
Fu pumber gf demar}d flow thaF departs'from staFion u at
iJ interval ¢ and arrives at station v at interval j
v pumber of demal}d flow thaF depa.rts.from station v at
uJ interval ¢ and arrives at station u at interval j
2 number of yehicles .that are s'cheduled‘ to depart from u
iJ at interval ¢ and arrives v at interval j
2t nur_nber of yehicles Athat are s_cheduled'to depart from v
iJ at interval ¢ and arrives w at interval j
cap capacity of the vehicle
e > 1 empirigal factor as there are get-ons and get-offs
during the trip
N number of vehicles of the fleet
cap™ capacity of station u
cap? capacity of station v
sy number of vehicles at station w at interval ¢
sy number of vehicles at station v at interval ¢
A; the i-th subarea
G; set of grid covered by A;
P threshold of overlap area between a grid g and a subrea
A;
fg(z,t) flow of a grid
Fw(A;,t) | weight of flow in subarea A; that begins at time ¢
ft flow from u to v at time ¢
No(s) number of currently received pickup and drop off
requests at stop s
Ni(s) flow weight of grid which stop s belong to
Ié] a balance factor for No(s) and N1(s)
BS set of backbone stations
bs; the i-th backbone
w constraint time window for the pickup

B. Flexible Route Scheduling

Given a flex route from station u to o, the operation time
domain is split into n slots. For example, if there are 16 hours
of operation time for the route, and each slot is two minutes,
then there are n = 480 (16%60/2) time slots. x;; denotes the
number of vehicles that are scheduled to depart from u at
interval i and arrive v at interval j. Similarly, x}’, denotes the
number of vehicles that are scheduled to depart from v at
interval i and arrive u at interval j. Fig. 3 illustrates the slots
and trip scheduling problem. The scheduling is modelled as
a Mixed-Integer Linear Programming (MILP) problem based
on the historical demand of flows:

n n
1N 1 . u u v 0
minimize : E E |Fl-j—C>kxij|+|Fij—C>kxij
i

(10)
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Fig. 3. Illustration of timeslots and trips corresponding to the flexible route
scheduling problem.

n
subject to: 5% =5, —xj; + Zx;’i, i=1l.n—1
=1
Y
n
Si1 =S — X —}—Zx;‘i, i=1l.n—1
=1
(12)
s +s) <N (13)
0<s/<cap", i=1.n (14)
0<s{ <cap®, i=1.n (15)

u v
-xija-x" 2 07

,, (16)

i=1l.n, j=1.n

The objective (10) is to minimise the gap between the
demand and supply of vehicle seats. F}; is the number of
demand flow that departs from station u at interval i and
arrives at station v at interval j; Fi’j{ is the number of demand
flow that departs from station v at interval i and arrives at
station u at interval j. F}; and F}, are given as constant
variables for the model and we will discuss their calculation
in the next section. C is the supply of seats in a single vehicle,
which could be empirically calculated by cap * x, where cap
denotes the capacity of the vehicle and x > 1 denotes the
empirical factor as there are get-ons and get-offs during the
trip.

si denotes the number of vehicles at station u at interval i.
Constraints (11) and (12) imply the change of vehicles at u
and o at interval i by subtracting the departed vehicles and
adding the arrived vehicles. Constraint (13) ensures at the very
beginning vehicles at station # and v are within the range of N,
which is the number of vehicles of the fleet. Constraints (14)
and (15) imply the number of vehicles at station u and o
should be greater than zero and smaller than the capacity of
the stations, i.e. cap" and cap®. Constraint (16) defines the
value of the decision variables xl’.‘j and xl?)j, which should be
Zero or positive integers.

The flow of trips is a key factor when scheduling the routes,
which are calculated based on the OD dataset. As mentioned
previously, the OD dataset contains origin and destination GPS
points, and the points are indexed by a set of grids on the map.
We further split the OD pairs by time slots, so the set of OD
pairs are stored and indexed according to spacial and temporal
dimensions. We use a table, denoted by I'(z), for the storage,
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Fig. 4. Tllustration of service area and subareas. The traffic flow is calculated
based on grids and OD points in the service area.

and each tuple is in the form < 1, g,, g4, num >, where z is
the grid, ¢ is the time slot, g,, g4 denote the grid of the origin
and destination respectively, and num is the number of the
corresponding OD pairs.

Supposed the route under consideration is r(u, v, t), which
is from station u to v and departs at time 7. Then the trip flow
F; is then calculated as follows:

1) Split the service area into subareas. K denotes the
number of subareas and is calculated as:

tt(ry*(1+a)
fﬁ]

where fz(r) is the traveling time of r and o is the
slack ratio, U is the length of time slot unit. So the
service area is equally split into K rectangle subareas
{A1, Az, .., Ak}, which is illustrated in Fig. 4.

2) For each subarea A;, get the set of its covered grids Gj.
A grid g is covered by A; if the following condition
holds:

K = (17)

ar(g) —

where ar(X) denotes the area of polygon X, 6 € [0, 1]
is the a predefined threshold.

3) For each grid z within subarea A;, calculate its trip flow
that begins at time . The flow of a grid is defined as

fe(z,1):

fe(z,t) = Z x.num, x.t €slot(t,i), x.gg €G

xel'(z)
slot(t,i)=[t+@—-1D=U, t+1i=xU),
i=1,2,...,K (19)

where x is a tuple in table T'(z), G = G1UG,...UGg is
the set of all the grids in the service area of r/, slot (¢, i)
is the i’" time slot that begins at # and has an interval U.
Then the weight of flow in subarea A; that begins at
time ¢ is defined as:

fw(Ai,0) =D fe(z,1)

ZEG,‘

(20)

4) Calculate the demand flow from u to v at time ¢, which
is defined as follows:

K
fr=2 fw(Ai,0)

i=1

21

And f; is mapped to Fi‘j‘. as follows:

F4 — [ﬁ’
ij
0,

where to_slot(¢) is a function that maps time ¢ to the index
of time slot, r7(r) is the running time of vehicle that travels
along route r(u, v, t). Similarly, flow F;; is calculated based
on route r(v, u, t) that departs v for u at time .

i=to_slot(t) and j=to_slot(t + rt(r))

i #to_slot(t) or j#to_slot(t +rt(r))
(22)

C. Optimal Path of Flex Route

When a route r(u, v, t) is scheduled, information about its
departure time and destination would be notified to potential
riders. A rider might either go to the backbone stops to get
on the vehicle, or just send a request req(z, 0, d, w) trying to
be picked up, where the request might be accepted or rejected
by the flex vehicle system.

We adopt a data-driven approach in this study. The pattern
of OD (origin-destination) pairs is mined to identify dynamic
stops. With a large number of origins and destinations of the
travel demands, we could cluster these points collectively to
represent potentially meaningful places. These places are the
potential locations for the stops.

The shared nearest neighbors (SNN) is adopted as the basis
of distance measure between two GPS points. Given two
points A and B, the distance is defined as:

w(Ni (x) N N (v))

w(Ni (x) U Ni(y))
where Ni(x) is the set of k nearest neighbours of x, w(Q) is
the total weight of points in set Q. This distance meets several
requirements for the spatial clustering of origin/destination
points: 1) a cluster would meet a minimum size constraint
k, and each cluster is spatially contiguous; 2) it preserves the
data resolution by constructing as many clusters as possible;
3) it identifies clusters of different point densities and different
shapes. So the summary statistics (e.g. net flow ratio) for each
cluster are meaningful and usually stable.

dist(x,y)=1-— (23)

maximize : Zx;r (24)
ieV
xi+ € [0, num™ (i)] (25)
x; € [0, num™ (i)] (26)
fF+xt = f;r (27)
fitx; =f; (28)
> aj=1, jevV-u (29)
(u,J)EE
dlaj=1, ieV-u (30)
(i,v)eE
dlaj<l, ieV—u 31)
(i,))eE
D> a1, jev-u (32)
(i,j)eE
b,-,jza,-,j, i,jEV (33)
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Service Area

O stops O O temporary stop

Jh origin of request ¥y destination of request — path of flex route

backbone stop

Fig. 5. Illustration of a route graph and the actual path of flex route. The
path consists of backbone stops, which are selected based on historical OD
data, and the ad-hoc stops, which are determined in real time.

b,‘,j-i-bj,ifl, i,jeV (34)
bij+bjjy+bji;j<2, i,jeV (35)
eo+fi+—fi+—|—xi+—x;§cp, ieV

(36)

> aijxtl,j) <ri(r) (37)
(i,))eE

aij, bi,j S {0, l} (38)

,-+, fi =0 (39)

Given a route r(u,v,t), and a set of stops Q within the
service area W, we define finding the optimal path of this
route as the OPFR problem (Optimal Path of Flex Route).
First we model the stops in the service area as vertices in a
directed graph G,(V, E), which is also called the route graph.
V is defined as {u, v} U Q, an edge (i, j) is added to E if the
distance [(i, j) is less than a threshold, where i, j € V. Then
finding a path in the service area can be modelled as a Mixed-
Integer Linear Programming (MILP) problem.

Table II denotes the meanings of the symbols. The goal (24)
is to maximise the number of served requests. Constraint (25)
and (26) ensure that the vehicle selectively picks up or drops
off riders that belong to that stop. Constraint (27) and (28)
imply the total number of picked or dropped riders when
vehicle traverses the edge (i, j). Constraint (29) and (30) mean
the path should start at # and end at v. Constraint (31) means
any location from V — u has one successor, and (32) means
any location from V — v has one precursor. Constraint (33)
implies the relationship between a; ; and b; j, which could
be inferred from their definition. Constraint (34) implies that
(i, j) and (j,i) could not both on the path, constraint (35)
implies no circles on the path. Constraint (36) ensures the
number of riders is smaller than the vehicle capacity at any
stop. Constraint (37) ensures that the cost of traveling time is
less than the running time. Finally, constraints (38) and (39)
define the nature of the variables.

D. Origin-Destination Insertion Based on Backbone Stops

The problem of finding optimal solutions for a flexible
transit system is a dial-a-ride problem [15], [16] and is
NP-complete. When real-time requests are received by the flex
route system, the set of R changes accordingly, and the running
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TABLE II
NOTATIONS IN THE OPFR PROBLEM
+ number of requests e number of on-board
2 picked up at ¢ 0 riders at u
— | number of requests . .
: dropped off at i cp capacity of vehicle
number of picked up .
fi7 | requests at i (i is not | num™ (i) number of desired
g . pickups at ¢
included )
number of requests .
fi | dropped off at ¢ (i is | num™ (3) number of d<?51red
g drop offs at ¢
not included )
- | is Lif (4,7) is on the - traveling time from ¢
%7 | path; else 0 £(i.J) to j
is 1 if both 7 and j
are on the path and i set of stops within
precedes (not .
b; necessarily 1% service area plus u
. . . and v
immediately) j; else

time varies with the time. So in real situations the problem has
larger complexity with dynamic finite capacity and with more
constraints (e.g., time). In this section we present a heuristic
algorithm that integrates the historical OD patterns to construct
a path for the flex route.

1) Backbone Stops: The stations are divided into three types
with different degrees of popularity: the start/end stations,
backbone stops, and ordinary stops. Both backbone stops and
ordinary stops are mined from the request dataset, where
backbone stops are locations with more requests than other
locations. In more detail, clustering method is used to cluster
the requests of the whole area at a certain time, and the cluster
centers are mapped as stops in the road network. Flexible
vehicle would stop at the backbone stops, which provides some
certainty to the riders on the location dimension. Backbone
stops can also be manually designated if the operator considers
flexible vehicles must stop at some locations to pick up riders.
On the contrary, ordinary stops are candidate stops that might
not have so many requests; but if there are requests, the flexible
vehicles would still stop and pick up the requests. Whether
vehicles would stop at the ordinary stops or not depends on the
real-time requests, so the ordinary stops provide some degree
of flexibility to the route planning.

The service area of a flex route consists of K rectangle
subareas. For each subarea A; of route r(u, v, t), we define a
backbone stop bsi:

bs; = argmax {f * No(s) + (1 — f) x Ni(s) : s € S;}

No(s) = num™ (s)+num=(s), Ni(s)= fw(s.grid,1)

(40)

where f € [0, 1] is a balance factor, S; is the set of stops within
the subarea A;. No(s) is the number of currently received
pickup and dropoff requests at stop s, N (s) is the flow weight
of s.grid, which is denoted by fw(s.grid,t) and defined
at (19). Here s.grid is the grid that s belongs to.

The set of backbone stops together with the stations u, v
are denoted by BS = {bso, bsi1, bsa,...bsk,bskg+1}, where
bso = u,bskg+1 = v. Stops in BS are arranged in topological
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order of the directed acyclic graph, and the shortest path
{bs; — bs;j;+1} between bs; and bs;y1,i =0, ..., K could be
calculated. So the initial path for the flex route is generated by
iteratively connecting the backbone stops and their temporary
stops between them. As illustrated in Fig. 6(a), the shortest
path between a and e is (a —d — e), so d is also added to the
path of the route. We denote the path of route r by path(r) and
denote the set of all stops in path(r) by S(path,r). As there
is only one backbone stop at each subarea within the service
area, we assume that initial path(r) would always satisfy the
running time constraint.

2) Path Insertion: The initial path is then extended, i.e. new
pickup and dropoff stops are inserted into the path, as new
requests are coming in. Give a request req (o, d, w), suppose
o' and d’ are the nearest stops to o and d, and d’ is behind
o' in topological order, there are three cases when inserting
stops to the path:

o When both o’ and d’ are in set S(path, r), the request is
immediately accepted. The insertion of request does not
add extra cost to the path. If o’ or d’ is not a backbone
stop, it becomes a backbone stop, and the stop is moved
to BS.

o When only one stop, either o’ or d’, is in BS, the flex

route system would check whether the stop is feasible to
be added to the path. Without loss of generality, suppose
the dropoff stop d’ is already in the path, yet the pickup
stop o’ is to be checked. Suppose the subarea that contains
0’ is A;, and the set of backbone stops in path(r) con-
tained in A; is BS(A;) = {bsj41,bsj42, .., bsjim}, then
the possible insertion positions are: Iy, 11, I, ..
where Iy = (bsjyk,bsjiky1), K = 0,1,...,m, and
bs;j is the last backbone stop at subarea A; 1. Fig. 6
illustrates an example of an insertion into the path, where
(a,e), (e, f), (f, g) are the possible insertion positions
for stop c.
For every possible insertion position, a new path is built
to contain the new requested stop o’. The new path after
insertion at 7, is denoted by path(r), and the insertion
position is selected by the following formula:

M Im,

ki1 = argmin {cost(path(r)y) : cost(path(r),) <rt(r),
X

x=0,...,m}
(41)

where cost(path(r)y) is the cost of traveling along
path path(r)y, rt(r) is the running time of route r.
The path with insertion [, has the least traveling time.
The path is selected and it is feasible, i.e. meets the
running time constraint.

If there is a feasible path after insertion, the request would
be accepted; otherwise, the request would be rejected.
When o' is inserted at Iy, = (bsj4k,, bSjsk,+1), stop o’
is added to BS and the path is updated by following
operations:

path(r, o) = path(r) —{bsj+k, = bsj+k +1)}
path(r, o) = path(r)+{bs;tx, — 0"} +{0" — bsjix 41}
(42)

QO stop

O backbone stop
O temporary stop
@ stop to be inserted

subarea Ai — path of flex route

subarea Ai

(a) before insertion (b) after insertion

Fig. 6. An example of an insertion into the path. (a, e), (e, f), (f, g) are
the possible insertion positions for stop c. Yet (a, e) is the insertion position,
new paths are built by adding shortest paths ¢ — ¢ and ¢ — e, and removing
a—e.

where {a — b} is the shortest path from a to b. In Fig. 6,
(a, e) is the insertion position, new paths are built by
adding shortest paths a — ¢ and ¢ — e, and removing
a—e.

o When both stop o’ or stop d’ are not in BS, two insertion
positions are identified and the feasibility of a new path
after insertions is checked. The insert procedure is similar
to case (2). Suppose the subarea that contains o’ is A;,
and the set of backbone stops in path(r) contained in
A; is BS(A;) = {bsjy1,bsj42,..,bsjym}. The possible
insert position of o’ is defined as Iy, I3, b, ..., I,, where
I = (bSjyk, bsj1iv1), k = 0,1,...,m, and bs; is the
last backbone stop at subarea A;_j. Similarly, we define
the subarea that contains d’ as A;/, and the possible insert
positions of d’ is defined as I/, I{, I}, ..., I,, where

Ip = (bsjrpk, bsjrigq1), k =0,1,...,n. bsj is the last

backbone stop at subarea A; ;. Then the insert positions

for o' and d’ are calculated by the following formula:

(k1, ko) = argmin {cost(path(r),,y) :

(x,y)
cost(path(r)x,y) <rt(r)},
xx=0,....m, y=0,...,n (43)

where path(r),,, denotes the path of r if inserting o’ at
I, and d’ at Iy. Only when both insertions are allowed,
the request is accepted; otherwise, the request is rejected.
The stops would be added to set BS if the request is
accepted.
3) Algorithm Description: Algorithm 1 in the Appendix is
the pseudocode of the origin-destination insertion algorithm
based on the backbone stops.

V. PERFORMANCE EVALUATION

We conducted experiments on real-world road networks and
trajectory datasets to verify the performance of the proposed
scheme. The schemes are implemented in Java 1.8 and experi-
ments are run on a notebook computer with Intel Core i7 CPU,
2.6 GHz, 16 G RAM under Windows 10.

A. Environmental Setup

1) Road Networks: The road network of the Xiamen City,
Fujian Province, China is used for the simulation, which con-
tains 24750 road vertices and 32364 road segments. By default,
we set the average vehicle speed to 35 km/h in the urban
area and set the traveling time of each road segment as its
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Fig. 7. Distributions of origins (in red) and destinations (in green) of trips
during 6:00 a.m. to 10:00 a.m. on July 2, 2014 in the Xiamen Island, Fujian
Province, China.

weight. We get the map of the Xiamen city ([118.0660E,
118.1980E]*[24.4240N, 24.5600N]) from OpenStreetMap and
load the graph into the memory using the JGraphT framework
1.3.0 so as to make efficient shortest path queries on the road
network. The road network is divided into 100*100 grids,
which is to facilitate the calculation of the request density
and stops of different regions.

2) Datasets: It is hard to forecast the transit demand of
requests for flexible vehicles or customized buses due to the
lack of real-world OD datasets that reflects the pattern of
requests. But as there is a large overlap on the customers
of taxies and flexible vehicles, in this research we adopt the
Xiamen Taxi Dataset? for the simulation, which consists of
one-month trajectory data of about 5,000 taxicabs in Xiamen
city, China during July 2014. There are about 220 million
GPS position records and 8 million live trips. The trajectory
reporting frequency is 1-2 times per minute. For this simula-
tion we extracted trajectory data from 6:00 a.m. to 10:00 a.m.
on July 2, 2014, including 59311 trajectories for performance
evaluation. Fig. 7 shows the distribution of GPS points in the
dataset.

B. Data Preprocessing

The stops are mined from the trajectory dataset, and the
preprocessing includes three steps: 1) matching GPS points;
2) calculating the flow of passengers in each grid, 3) defining
the service area, and 4) identifying the backbone stops.

1) Matching GPS Points: For each GPS record, it is ineffi-
cient to match every possible road segment. Rather, we only
need to identify a few road segments that cover all possible
segments for the GPS record while filtering others. According
to [41], [42], GPS location errors can be as large as 100 meters
in a city with dense tall buildings and viaducts. 100 meters can
be roughly regarded as 0.001 latitude or longitude. So imaging
there is a circle of radius 0.001 latitude or longitude centered
at the GPS record, the GPS record can only reside on the

1 https://jgrapht.org/
2http://mocom.xmu.edu.cn/project/show/xmdataset
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GPS Record

Fig. 8. The maximum distance appears when the road segment is tangent to
the circle and the tangent point turns to be the midpoint.

Fig. 9. Terminal stations u, v(in blue) and service area (rectangle in black,
with 8.91 km in length and 0.8 km in width) in the Xiamen City, China. The
map is divided into 10000 grids (in light grey), and the backbone stations are
illustrated by stars.

road segments that intersect or tangent to the circle. From our
investigation, 99.27% road segments in our road network are
less than 0.005 latitude or longitude long. Such a circumstance
is described in Fig. 8. The maximum distance appears when
the road segment is tangent to the circle.

We test each road segment on the following criteria: whether
there exists a road segment that meets the condition that the
distance between the endpoint and the GPS record is less than
0.0027 latitude or longitude long. For most cases, the GPS
record would select the nearest road segment. But in some
cases, the timestamps of the GPS record are also considered
to discard anomalies or to select the road segments. When the
forward and backward conjunctive GPS records reside at the
same road segment, then the middle GPS point would locate at
the same road segment. Once the road segment is determined,
the tangent point to the circle is set to be the calibrated GPS
point. But if the GPS is more than 0.0027 latitude or longitude
long away from the road segment, it would be discarded.

2) Calculate the Flow of Passengers: The road network
is divided into 10000 (100 * 100) grids. The GPS locations
of origin-destination pairs are calibrated and mapped to the
nearest vertexes in the road network. The flow of passengers
is calculated by accumulating the number of origins or des-
tinations within the grid. The time of each request is set w
earlier according to the constraint of pickup window.

3) Define the Service Area: The terminal station u and v
are defined as in Fig. 9, where the width is set as 1.6 km,
and the time unit U is set to 5 minutes to divide the service
domain into subareas according to Eq. 17. The slack ratio (a)
of the flex route is set 0.6.
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4) Identify Backbone Stops: The backbone stops are calcu-
lated according to Eq. 18-22 in each subarea. The threshold
6 and p are 0.5, and the values of them are standardized in
range [0, 1] to make No(s) and N(s) in the same order of
magnitude. Fig. 9 illustrates the service area and backbone
stops.

C. Compared Schemes and Metrics

Besides the proposed Flex vehicle scheme, other
origin-destination insertion schemes and scheduling schemes
are also conducted for performance comparison.

1) Insertion Schemes:

o Fixed pickup/pickoff (fixed): pickup and pickoff passen-

gers along fixed stations. Stops between u and » locate
300 meters away from their adjacent stops.

o Greedy algorithm with origin-destination insertion
(greedy): according to the topological order of the stops
in the road network, the adjacent stops with the most
requests and their corresponding destination stops are
selected to be inserted to the route.

o Probability-based spreading (B-planner [19]): cluster
“hot” areas and split hot areas into clusters to iden-
tify candidate vehicle stops. It uses a bidirectional
probability-based spreading algorithm to generate candi-
date vehicle routes, and adds constraints of time window
to the requests.

o Heuristic backbone-based origin-destination insertion
algorithm (backbone): it is the insertion algorithm pro-
posed in this paper.

2) Scheduling Schemes: Besides the milp scheduling

described in section IV, two other scheduling schemes are also
implemented for comparison:

« Fixed time slot scheduling (fixed-slot): set a fixed depar-
ture interval for adjacent vehicles. It serves as the baseline
of the schemes.

o Genetic algorithm-based scheduling (genetic): setting the
operating cost as the objective value, it uses the genetic
algorithm to construct the scheduling model.

3) Traveling Schemes: Different insertion and scheduling
schemes are combined to form traveling schemes. Besides the
proposed Flex vehicle system, which is actually a combination
of the backbone insertion scheme and milp scheduling scheme
(backbone-milp), we also conduct other three vehicle traveling
schemes for comparison.

o fixed-fixed-slot: vehicle traveling along fixed stations and
scheduling according to fixed time slots scheme.

o fixed-milp: vehicle traveling along fixed stations and
scheduling according to the milp scheme.

o backbone-fixed-slot: vehicle traveling according to the
backbone insertion scheme and scheduling according to
the fixed-slot scheme.

o backbone-genetic: vehicle traveling according to the
backbone insertion scheme and scheduling according to
the genetic scheme.

4) Metrics: The sharing amplifier (sa), rider delivery ratio
(dr), and the average walking distance (wd) are three main

TABLE III
PERFORMANCE OF THE TRAVELING SCHEMES

Schemes Sharing Delivery {‘;Iv;‘]zil[gle é“;:il;?fe

/Metrics Amplifier Ratio(%) Distance (%n ) Time (mi%l )
fixed-

fixed-slot 1.88 18.64 433.60 11.46

fixed-milp 2.80 26.15 442.52 9.73

backbone-

fixed-slot 4.28 26.96 154.33 7.18

backbone- 5.88 46.54 152.62 7.05
genetic

backbone- 7.37 50.51 153.87 6.22

milp

metrics introduced in Section IV.A. As we aim to study the
gap between the demand and supply of vehicle seats, the value
of (10), denoted as seat-request-gap (srg), and the operating
costs (oc) are adopted as metrics for the scheduling. srg is
defined as:

n n
srg= D D |Fi—Cxxli|+|F, - Cxxlj|  (44)
i
And the calculation of operating cost is as follows:
oc=0xwc+ (1 —0)x*tc (45)

where 6 € [0,1] is a balance factor, wc and tc are the
waiting cost of passengers and the traveling cost of vehicles
respectively. wc is calculated according to the average monthly
income of Xiamen:
wage
“ T 2142%8%60

where wage is the average monthly wage, which is to be
divided by the average working days per month (21.42), the
working hours per day (8), and the minutes per hour (60). The
traveling cost zc¢ is obtained from historical vehicle operation
data. In this research ¢ is set 0.5, wage is 8000 RMB per
month, and zc¢ is 6.14 RMB/km.

(46)

D. Experimental Analysis

1) Overall Performance: There are 10 vehicles deployed
by default, where each terminal station # and v has 5 vehicles
scheduled for operation at the initial time, i.e. cap" and cap®
are both set 5. The capacity of the vehicle cap is 35, the
empirical factor « is 1.5, the slack ratio a is 0.6, and the pick
up time window is set to 10 minutes, U is set to 10 minutes
by default.

Table III shows the overall performance of the five different
traveling systems. The simulation was conducted based on the
Xiamen Taxi Dataset from 6:00 am to 10:00 am on July 2,
2014. The backbone-milp and backbone-genetic have the high-
est sharing amplifier, which are 7.37 and 5.88 respectively.
Meanwhile, backbone-milp has the highest delivery ratio at
50.51%, which is about 170% higher than the fixed-fixed-
slot scheme. The backbone-milp scheme also has the shortest
average waiting time at 6.22 minutes, and the average walking
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TABLE V
PERFORMANCE OF THE SCHEDULING SCHEMES

Schemes Sharing Delivery Avera}ge Ave'r age
/Metri Amplifier | Ratio(%) | . valking Waiting
etrics plitie atlo( % Distance(m) Time(min)
fixed 3.10 2.74 252.62 12.77
B-planner 5.17 3.13 157.00 10.63
greedy 542 2.10 167.35 7.82
backbone 7.10 6.49 154.12 5.55

distance is 153.87 meters. The fixed-fixed-slot scheme is set as
the baseline. It can be found that when the scheduling scheme
is changed from fixed-slot to milp, the sharing amplifier and
delivery ratio increase by about 48% and 40% respectively.
This is mainly because milp would schedule more vehicles
when there is more demand in service area to maximize the
objective function. When changing the traveling scheme to the
proposed backbone scheme, the average walking distance of
passengers is reduced by about 38%. The stops in the backbone
scheme are carefully calculated and generated from mining
the historical request data, therefore it reduces the paths
passengers travel. Meanwhile, the sharing amplifier increases
by 127% as the backbone scheme responds to the requests
in a more immediate way and can fulfil more demands.
The average waiting time is reduced by about 39%, due to
the fact that backbone minimizes the time loss caused by
each newly added origin-destination pairs and a delay time
window is set. From the performance comparison, we can see
that the proposed data-driven insertion scheme and optimized
scheduling scheme together bring higher benefits to the vehicle
operation.

To study the performance of the insertion schemes, the
number of trips is set to 1. Table IV displays the overall
performance of different insertion schemes when the vehicle
only goes once from u to v. The backbone scheme has
the highest sharing amplifier at 7.10, which is about 129%
and 37% higher than fixed and B-planner respectively. The
backbone scheme also has the highest delivery ratio, which is
about 136% and 107% higher than the fixed and B-planner
scheme. This is because vehicles in the backbone scheme
do not stop at the fixed stop, the flexibility provides more
opportunities for nearby requests to be fulfilled. The greedy
scheme has the lowest delivery ratio, as it inserts stops that
have the highest number of requests and this may miss requests
in other locations. The average walking distance of passengers
received by vehicles in backbone and B-planner is 154.12 and
157.00 meters respectively, which is about 39% less than that
of fixed. The main reason is that the set of stops in backbone
and B-planner are both mined from the historical request data,
where the surrounding areas of these stops have high request
density. Passengers can reach the nearest vehicle stops with a
shorter distance. Also, the backbone scheme has the shortest
average waiting time for passengers at 5.55 minutes, about
56% shorter than that of the fixed scheme.

Table V displays the performance of three different schedul-
ing schemes when the insertion scheme is fixed, i.e. adopting
the fixed scheme from 6:00 a.m. to 10:00 a.m. on July 2, 2014.

Schemes Seats-Requests- Delivery Operating

/Metrics Gap Ratio(%) Cost(RMB)
fixed-slot 1533 21.00 21479
genetic 912 22.69 1887.7
milp 727 26.95 1700.8

The milp scheme has the minimal gap between the number of
seats and the requests, which is about 53% and 21% lower
than that of the fixed-slot and genetic scheduling scheme.
Meanwhile, it has the highest delivery ratio at 26.95%. The
genetic scheme has the lowest operating cost, which is 1700.8
RM B. Compared with fixed-slot, the gap between the demand
and supply of vehicle seats is reduced by more than 40% when
adopting the genetic and milp schemes. This is because both
the genetic and milp schemes have the flexibility to adopt to
the requests of passengers. The goal of the genetic scheme
is to minimize the operating cost of vehicles, so when there
are fewer demands generated in the service area, less vehicles
will be provided. Similarly, the milp scheme sets this gap as
its objective function. The genetic and milp schemes also have
a delivery ratio about 8% higher than that of the fixed-slot
scheme, since when there are more requests in the service
area, more vehicles would be scheduled for passengers to be
picked up. The overall operating cost of vehicles is also shown
in Table V. The genetic scheme has the lowest operating cost
as we set the operating costs of vehicles as objective function.
Also, the proposed milp scheme has lower operating cost than
that of the fixed-slot scheme owing to the flexibility of vehicle
scheduling.

2) Impact Factors: We also vary several critical factors, i.e.,
the slack ratio a, the width of service area, and the length of
pick up time window to study their impact on the proposed
scheme.

Fig. 10 depicts the impact of slack ratio a. When «a
increases, the sharing amplifier and the delivery ratio both
increase for the backbone and greedy schemes. Larger o means
longer travelling time, so requests have more opportunity to be
accepted. Also, when « is set at some value, e.g. 0.8, 1.1 and
1.7, some requests with shorter distance are also fulfilled
in this scenario, so the sharing amplifier decreases slightly
according to its definition defined at Eq. 7. The backbone
scheme also outperforms greedy on the sharing amplifier and
delivery ratio, especially when a becomes higher. Larger o
means more chances for the proposed algorithm to optimise
the insertion, and more requests could be accepted. Pas-
sengers’ average walking distance on backbone and greedy
reaches its minimal when a is 0.4, which are 144.09 and
160.43 respectively. Also, the passengers’ average waiting
time fluctuates as a increases. When more travelling time
is provided, stops far away from the initial path can now
be inserted, yet it also means the vehicle needs to take
longer to reach these stops. The average waiting time of
backbone reaches the minimum value when « is 1.4, which
is 3.95 minutes. On the contrary, the average waiting time
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of greedy increases with a, which is because the time loss
brought from inserting stops with the most number of requests
is amplified when a increases.

Fig. 11 depicts the impact of the length of the subarea (U)
on the sharing amplifier and delivery ratio. We can find that
when U grows from 4 minutes to 12 minutes, the sharing
amplifier increases from 4.61 to 7.02. A larger U means larger
subarea, and hence fewer backbone stops that the vehicle
should visit. So the route would have more flexibility and the
sharing amplifier would increase. The sharing amplifier then
goes to be stable, this is mainly due to the time constraint of
the flexible route which makes it hard to accept more requests.
Accordingly, the delivery ratio reaches a maximum value when
U is about 8 minutes, and then goes down as the subarea grows
larger.

Fig. 12 illustrates the impact of the pickup time window
on the sharing amplifier and delivery ratio. We can find that
the sharing amplifier increases significantly when the length of
time window increases from 2 minutes to 6 minutes. After that,
the increase on the length of time window has little impact. But
as the length of time window increases, the delivery ratio also
increases as longer waiting time gives requests more chance
to be accepted.

We also vary the number of seats in a single vehicle cap
and the number of planned vehicles N to study their impact on
the resource utilization and the delivery ratio of the proposed
scheme. The fixed travelling scheme is adopted by default,
and cap is set from 0 to 30 and N is set from O to 20. From
Fig. 13 (a), we can see that the gap between the seats and
the requests decreases with cap and N. When more vehicles
or more seats are provided, requests have a higher chance to
be accepted. Fig. 13 (b) illustrates the impact of capacity of
a vehicle on the delivery ratio. The delivery ratio increases
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amplifier, (b) delivery ratio, (c) the average walking distance, and (d) the average waiting time.
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with the number of seats in a vehicle and the number of
available vehicles. More seats and more vehicles mean more
requests can be accepted. However, small fluctuations occur
on the delivery, which is because the objective function of the
milp would make the provided resources of seats be as close
as possible to the actual flow of passengers.

VI. CONCLUSION

We propose a data-driven flexible transit system that inte-
grates the origin-destination insertion algorithm and the milp-
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based scheduling scheme. The historical patterns of the request
datasets are mined to efficiently construct a path for the
flex route, and the time loss caused by the optimal inser-
tion position of origin and destination of new request is
calculated to decide whether to receive the request. And a
vehicle scheduling model that minimises the gap between the
passenger flow and available seats is adopted to reduce the
operation cost. Experimental results show that the proposed
flexible transit system can effectively increase the delivery
ratio and decrease the passengers’ waiting time compared with
existing fixed or flexible transit systems.

The combination of flexibility and high sharing rate of this
research is consistent with the development concept of “smart
and green city”, where resources are fully utilized and the
cost of transportation is reduced. Our approach could evolve
with the pattern of requests by adjusting the stop locations and
the scheduling of vehicles. One drawback of our approach is
that it needs extra tasks of data collection and pre-processing,
which adds some degree of complexity to the whole public
vehicle transportation system. The flexible vehicles system
proposed in this research could be viewed as a special kind
of the demand-responsive or Taxi system. If we can obtain
more sources of data: existing transit modes, taxis, and other
similar services such as uber/lyft, we would be able to estimate
the demand and test our scheme in real-world scenarios. For
the future work, we are going to investigate other factors, e.g.
request priority and passenger utility, and propose efficient
algorithms to recommend optimized pickup stops for riders to
improve the overall quality of service of the transit system.
Also, we are to study the problem of multi-line flexible transit
system optimization in a data-driven approach.
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