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Abstract— The flexible transit service reflects a trend of1

demand on the flexibility and convenience in urban public2

transport systems, within which the vehicle scheduling and3

passenger insertion are two challenging issues. Especially, finding4

the optimal solution for a flexible transit system can be viewed5

as an extension of the traveling salesman problem which is6

NP-complete. Yet most of the existing research mainly focuses7

on one aspect, i.e. route planning, stop selection or vehicle8

scheduling, where a combined integration and optimization of9

the whole system is largely neglected. In this paper, we pro-10

pose a data-driven flexible transit system that integrates the11

origin-destination insertion algorithm and the milp-based (mixed-12

integer linear programming) scheduling scheme. Specifically,13

stops are mined from the historical datasets and some stops act14

as backbone stops that should be visited by the vehicles; and a15

heuristic backbone-based origin-destination insertion algorithm16

is proposed to schedule the routing path of vehicles, where the17

time loss caused by the optimal insertion positions is calculated18

for the vehicles to decide whether to accept the requests or19

not when constructing a path for the flexible routes. Moreover,20

a vehicle scheduling model based on milp is proposed to minimise21

the gap between the passenger flow and available seats. The22

proposed flexible transit systems are simulated in real-world taxi23

datasets, and experimental results show that the proposed flexible24

transit system can effectively increase the delivery ratio and25

decrease the passengers’ waiting time compared with existing26

methods.27

Index Terms— Flexible transit system, data-driven route28

scheduling, heuristic origin-destination insertion, mixed-integer29

linear programming.30
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I. INTRODUCTION 31

W ITH the development of mobile-oriented wireless net- 32

works and technologies, in recent years there has been 33

increasing research on improving the flexibility and availability 34

of urban public transportation systems [1], [2], [3], [4], [5]. 35

According to the service mode, urban public transportation 36

systems can be roughly divided into the f i xed and f lexible 37

transit systems [6], [7]. The fixed transit services have fixed 38

routes and fixed service schedules, which are more common 39

and have already been operated for more than a century. The 40

flexible transit service, however, is a more recent innovation 41

of service driven by the development of transit technologies, 42

mobile communications, and big data technologies. It reflects 43

a trend of flexibility and convenience in urban public transport 44

systems. Users could subscribe and order a transit request, 45

and the transportation system would fulfil this request by 46

dynamically scheduling the trips and vehicles through wireless 47

communications and back-end data processing [5], [8], [9]. 48

This brings about the concept of Flexible Bus and Flexible 49

Vehicle scheduling. 50

Compared with the fixed transit system that contains fixed 51

vehicles and routing lines, the flexible vehicle has several 52

advantages: 1) the transit lines are flexible according to the 53

distribution of requests and passengers. The lines and stops 54

change accordingly with the demands, and vehicles can avoid 55

stops or areas that are without boarding or alighting activities; 56

2) the number of vehicles serving the transit routes and the 57

time interval between sequential vehicles are dynamically 58

adjusted according to time and requests; 3) the stops are 59

flexible and could be optimized to be located to places that 60

are most convenient for the passengers. In this way, passengers 61

could walk shorter distances to reach the stops to be picked up, 62

and their waiting time could also be reduced. These two factors 63

are critical for the comfort of passengers [10]. In this way, the 64

overall efficiency of the vehicle company and the quality of 65

service could both be improved. Flex bus or flex vehicles [6], 66

[11], [12], [13], [14] solve the imbalance of spatial passenger 67

flow in the suburban areas or other lower populated places. 68

But we found that such flexible mode of transportations is 69

also needed in urban scenarios, as the passenger flow is largely 70

spatially and temporally imbalanced. 71

However, the vehicle scheduling and passenger insertion 72

are two challenging issues for the flexible transit system. 73

The problem of finding optimal solution for a flexible transit 74

system, also known as the Dial-A-Ride Problem (DARP) [15], 75

[16], can be viewed as an extension of the traveling salesman 76

problem. It is NP-complete, which involves calculating an 77

optimum journey for visiting a number of predetermined nodes 78

on a network. Existing research on flexible public transport 79
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provides methods on the route planning [17], [18], stop80

selection [19] and vehicle scheduling [20], [21]. Yet they only81

focus on one aspect of the problem, which lacks a combined82

optimization of the whole problem. Also, in most of the exist-83

ing approaches, the datasets of vehicles and passengers are not84

well used and integrated into the flexible transit system, which85

deters the overall optimization of the flexible transit system.86

In this paper, we propose a data-driven flexible transit87

system that integrates the origin-destination insertion algo-88

rithm and the milp-based (mixed-integer linear programming)89

scheduling scheme. We define factors related to the service90

area, slack ratio of traveling, and passengers’ pick up time91

window, and take them into account for the algorithm design.92

The proposed demand-responsive traveling scheme assumes a93

time-dependent road network model for the estimation of the94

operating cost, and models the vehicle scheduling as a Mixed-95

Integer Linear Programming problem. The major contributions96

of this paper are as follows:97

• We model the flexible transit system and define several98

concepts for the system based on trajectory datasets.99

The historical trajectory data are clustered to identify100

and generate a series of popular candidate stops called101

backbone stops. The service area, flex route, and the slack102

ratio and etc. are also formalized and defined.103

• We propose a heuristic backbone-based origin-destination104

insertion algorithm to schedule the routing path of vehi-105

cles. The algorithm integrates the historical patterns of the106

request datasets to efficiently construct a path for the flex107

route, and calculates the time loss caused by the optimal108

insertion position of origin and destination of new request109

to decide whether to receive the request.110

• We propose a vehicle scheduling model based on milp111

to minimise the gap between the passenger flow and112

available seats. An objective function that represents the113

resource utilization in milp is adopted to build the vehicle114

scheduling model.115

• We combine the origin-destination insertion algorithm116

and the milp-based scheduling into an integrated scheme,117

and conduct extensive simulations to verify the effective-118

ness of the scheme. Experimental results show that the119

proposed flexible transit system can effectively increase120

the delivery ratio and decrease the passengers’ waiting121

time compared with existing systems.122

The rest of the paper is structured as follows: section II123

describes the related work; section III introduces some prelim-124

inaries and defines the model; section IV presents the detailed125

modelling of the flexible vehicle transit system, which includes126

flexible route scheduling, optimal path of flex route calcula-127

tion, and origin-destination insertion; section V describes the128

environmental setup and analyzes the simulation results, and129

finally section VI concludes the paper.130

II. RELATED WORK131

In this section we review four categories of related works,132

and position our work in the research community.133

A. Demand-Responsive Transit Service134

Demand-responsive transit service is an alternative travel135

method to personal vehicles, carpool/vanpool and regular136

transit service. It is comprised of a number of customer 137

requests that need to be served door-to-door or curb-to-curb 138

by a set of vehicles [1], [2]. 139

One important issue in demand-responsive transit service 140

is to devise a real-time matching algorithm that determines 141

the best vehicle (taxi, cab, vehicle) to satisfy incoming ser- 142

vice requests. Dijoseph et al. [22] proposed a mathematical 143

model to optimize the social and fiscal sustainable opera- 144

tion of a feeder bus system considering realistic network 145

and heterogeneous demand. Ma et al. [23] proposed a taxi 146

searching algorithm using a spatio-temporal index to quickly 147

retrieve candidate taxis that are likely to satisfy a user 148

request. The algorithm checks each candidate vehicle and 149

inserts the query’s trip into the schedule of the taxi that 150

satisfies the query with minimum additional incurred travel 151

distance. Based on [23], Ma et al. [8] reported a real- 152

time taxi-sharing system based on the mobile-cloud architec- 153

ture. Drivers and passengers exchange services and demands 154

using an application installed on their smart phones, and 155

the taxi that minimizes the increased travel distance of the 156

ride request would be selected to pick up the new passen- 157

ger. Gomes et al. [24] designed a heuristic approach that 158

involves the construction of a feasible route through a greedy 159

randomized procedure, followed by a local search phase, 160

and a Decision Support System was also embedded in the 161

simulation [25]. Zhu et al. [26] proposed a path planning 162

strategy that focuses on a limited potential search area for 163

each vehicle by filtering out requests that violate passenger 164

service quality level, and studied the joint transportation and 165

charging scheduling for public vehicle systems to balance the 166

transportation and charging demands, ensuring the long-term 167

operation [27]. 168

B. Flexible Transit and Customized Vehicle 169

Flexible Transit service is firstly adopted in low-demand 170

areas (e.g. the suburbs of a city and industrial parks). The 171

demand for public transport is relatively low and distributed. 172

To cut down the operation cost and to increase the degree of 173

passenger satisfaction, flexible transit service adds flexibility 174

to transit routes and schedules. The vehicle routes, vehicle 175

schedule, vehicle stops, or vehicle types could be changed 176

by the operator; and the overall system cost could be sig- 177

nificantly reduced by effectively integrating conventional and 178

flexible services in comparison with conventional or flexible 179

services [13]. Recently, a fully flexible transit system such as 180

the DIDI mini-vehicle system has been brought into market 181

in Beijing and Chengdu, China. The DIDI mini-vehicle is a 182

seven-seat car without a fixed route, and it would pick up 183

the passengers who send requests to the system in realtime. 184

One main drawback of the mini-vehicle is that it cannot 185

pick up many passengers or provide transit over long ranges. 186

Martínez et al. [6] presented the formulation of a new 187

optimization problem designated as the express mini-vehicle 188

problem. It clusters small groups of clients with compatible 189

boarding/exiting points in time and space for a new type of 190

urban mobility service. 191

Recently, the concept of customized vehicle is introduced 192

and operated in many large and medium-sized cities. The 193
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operational activity of a customized vehicle is planned by194

aggregating space–time demand and similar passenger travel195

demands. The first customized vehicle was implemented in196

Beijing in October 2013, and 287 customized bus lines197

have been implemented in Beijing since December 2015 [7].198

Ma et al. [7] proposed an improved immune genetic algorithm199

to solve the model with regard to the problems associated with200

the operation of customized vehicles, such as stop selection,201

line planning and timetables. However, they only used some202

demand data or passenger flow data for the simulation. The203

impact of demand data on the designing is absent from204

these discussions. Mahrsi et al. [28] proposed two approaches205

to cluster smart card data to extract mobility patterns in a206

public transportation system. Ma et al. [14] proposed a data207

mining method to identify travel patterns for individual transit208

riders using a large smart card dataset. Nourbakhsh et al. [12]209

proposed a structured flexible-route transit system where the210

bus tubes form a “grand” structure that includes a grid211

tube network that provides double coverage to passengers212

in the central part of the city, and a hub-and-spoke tube213

network that provides a single coverage in the peripheral part.214

Boyer et al. [29] proposed a method to deal with the Flexible215

Vehicle and Crew Scheduling Problem. It aimed for high216

quality and fast to compute solutions for resources (vehicles217

and drivers) assignment to cover timetables generated at the218

tactical level, and adopted a mixed-integer linear programming219

model and a variable neighborhood search for this prob-220

lem. Repoux et al. [30] proposed a type of semi-autonomous221

transportation system that consists of convoys composed of222

one human-driven lead vehicle guiding several autonomous223

small capacity trailers. The trailers can detach from a convoy224

and travel autonomously in a protected environment before225

attaching later to another convoy.226

C. Vehicle Routing Problem With Pickup and Delivery227

The flexible vehicle network design can be formulated as228

a vehicle routing problem with pickup and delivery [31].229

The objective could be either minimizing the operation230

cost, maximizing satisfied demand, or maximizing the qual-231

ity of service [16]. These objectives are optimized sepa-232

rately or simultaneously. Given the objectives and constraints,233

the vehicle routing problem is usually formulated as the234

mixed-integer programming model with routing and schedul-235

ing variables [32]. For instance, Cordeau et al. [31] introduced236

a mixed-integer programming formulation of the problem and237

used a new valid inequalities for the dial-a-ride problem.238

The VRPPD is NP-hard since it is the generalization of239

Vehicle Routing Problem [33]. So for instances with a large240

number of requests, heuristics or metaheuristics approaches241

are adopted to deal with the large-scale real-life applications.242

Dondo et al. [17] proposed a two-phase heuristics algorithm243

to deal with the instance with a large number of passenger244

requests, where Phase I aims to identify a set of cost-effective245

feasible clusters while Phase II assigns clusters to vehicles246

and sequences them on each tour by using the cluster-based247

milp formulation. Zhu et al. [18] proposed a heuristic prece-248

dence constrained origin-destination insertion algorithm for249

the public vehicle system to minimize vehicles’ total travel 250

distance with service guarantee such as low detour ratio. 251

Sun et al. [34] developed a mixed integer non-linear model for 252

optimizing multi-terminal customized bus service in an urban 253

setting. According to the estimated spatio-temporal passen- 254

ger demand, the objective total cost, consisting of supplier’s 255

and users’ costs, is minimized subject to capacity and time 256

window constraints. Wang et al. [35] studied the last-mile 257

problem that concerns the provision of travel services from 258

the nearest public transportation node to a passenger’s home or 259

other destination. An exact mixed-integer programming (MIP) 260

model and feasible heuristic approaches are developed and 261

implemented to evaluate the system’s performance. 262

D. Vehicle Scheduling 263

Some research has been done on setting the departure 264

interval when scheduling the vehicles. Lee et al. [20] mainly 265

analyzed the relationship between departure interval and pas- 266

senger flow demand, and proposed an optimization method 267

of vehicle scheduling based on the delay of departure inter- 268

val, so as to reduce the probability of vehicle overload and 269

other situations. The problem of the best vehicle scheduling 270

mode is also solved by establishing models. Zhu et al. [36] 271

optimized the sum of the operating cost of vehicle company 272

in a whole day and the cost of passengers waiting for the 273

car and the transfer. And under the premise of reasonable 274

assumptions, they established an optimization model of the 275

vehicle departure interval. Zhang et al. introduced the comfort 276

of passengers in the vehicle scheduling optimization model 277

in [37], which is based on the full consideration of the 278

vehicle company operating costs and the passengers’ waiting 279

costs. Tan et al. [38] made a multi-object genetic algorithm 280

optimizing model, including the passengers and vehicle com- 281

panies, and used the genetic algorithm’s global optimization 282

search to deal with the operate vehicles on one vehicle line, 283

obtaining the optimal solution of vehicle departure interval. 284

Ma [39] put forward a hybrid departure scheduling model for 285

different vehicle models of the same vehicle line, which could 286

be solved by a genetic algorithm. Tephan et al. [40] mainly 287

aimed at optimizing the operation cost of public transport 288

companies, and established the timetable model of public 289

transport based on the factors such as passenger waiting cost 290

and vehicle empty seat punishment, and solves the model to 291

obtain the optimal vehicle schedule. Hoo and Ong et al. [21] 292

mainly considered the impact of urban traffic congestion on 293

vehicle scheduling. An optimization model based on vehicles 294

and other vehicles was proposed. The effectiveness of the 295

model for reducing traffic congestion is verified by simulation 296

experiments. 297

E. Positioning of Our Work 298

Demand-responsive transit service could be abstracted as a 299

member of the general class of the Dial-a-Ride Problem [15], 300

[16], which focuses on scenarios of planning schedules for 301

vehicles, subject to the time constraints on pickup and delivery 302

events. 303
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Different from the above mentioned research [6], [11], [12],304

[13], [14], [29], the proposed scheme adopts a data-driven305

approach for the flexible scheduling of vehicles. The differ-306

ences lie in three aspects: 1) in most of the existing research307

the terminal stations are predefined and given as external308

parameters, while we adopt a data-driven approach to deduce309

these parameters. For instance, the stations and stops are mined310

from real-world datasets and could be adjusted according311

to real-time requests. Also, the mobility or travel patterns312

could be beneficial to understand the variability of urban313

travel behavior and facilitating network design. But analyses314

of existing works are all based on dataset from fixed route315

transits. In this research we conduct the clustering algorithms316

on the real-world origin-destination datasets of taxis, which317

are more likely to be replaced by the flexible vehicles and318

mini-vehicle systems. 2) at existing research the stops are319

either fixed or decided by ad hoc requests, both of which320

lack a degree of flexibility. In our approach, all the stops are321

mined from the datasets and are defined as candidate pick-up322

locations. Vehicles would visit the backbone stops to collect323

the patterned or predicted requests, and would only visit part of324

the candidate stops to collect the predicted or ad hoc requests.325

In this way, both the static patterned requests and dynamic326

ad hoc requests could be handled efficiently and effectively;327

3) in previous research, the route scheduling and path routing328

were investigated separately. Our framework integrates the329

flexible route scheduling and optimal path routing, where a330

data-driven approach is adopted based on the real-world OD331

datasets. And existing schemes mainly considered how to332

meet the requests from passengers, yet the utilization of seats333

was largely neglected. In this paper, the proposed scheduling334

scheme aims to minimise the gap between the demand and335

supply of seats, and the number of allocated vehicles could be336

customized and dynamically adapted according to the demand;337

4) travel time variability would significantly affect the routing338

and scheduling of flexible public transport. Our approach is339

able to deal with the impact of variability of travel time as well340

as the distribution of passenger and vehicle arrivals. Vehicles341

travel with different speeds at different time spans when342

passing different road segments, and our data-driven approach343

could capture the pattern and evolve with the requests and344

travelling time by adjusting the locations of stops and the345

scheduling of vehicles.346

Also, while most of the previous flexible transit systems347

are adopted in the suburban area or other lower populated348

places, our study shows that flexible mode of transportation is349

feasible at urban scenarios and is able to handle the spatially350

and temporally imbalanced passenger flow.351

III. MODEL DESCRIPTION352

In flex-route transit service, vehicles travel among stations353

while responding to demands. A vehicle, denoted by c, follows354

the following two basic rules to provide the public transit355

service: 1) while traveling along route u → v, c receives on-356

demand requests within its service area. A request might be357

accepted or rejected by the vehicle; 2) if the vehicle accepts a358

request, it travels to the place and picks up the rider; else,359

it sends a reject message to the rider. In this section we 360

introduce some concepts and definitions of this model. 361

A. Stations and Stops 362

Vehicles pick up and drop off demand responsive riders at 363

stops, which are temporary locations between station u and v. 364

We denote the set of all possible stops as E . 365

Both stations and stops could be predefined, or extracted 366

from historical trajectories. In this research we adopt a data- 367

driven strategy which identifies stations and stops through 368

clustering the OD datasets. 369

B. Flex Route 370

Symbol r(u, v, t) denotes a route from station u to station v 371

starting at the scheduled departure time t . When a vehicle is 372

assigned to route r(u, v, t), it travels along path from u to v. 373

We denote the path from u to v through the shortest path by 374

u → v, and its traveling time is denoted by t t (r). Yet a vehicle 375

along the route would respond to riders’ requests, so it would 376

go to pick up the riders. The actual travelling path is denoted 377

by u ↪→ v, and its actual running time is denoted by at (r). 378

Also, a route has a scheduled running time r t (r), which means 379

the vehicle along route r should arrive v before the scheduled 380

time r t (r). The following formula holds: 381

t t (r) ≤ at (r) ≤ r t (r) (1) 382

Here we assume the times t t (r), at (r), r t (r) take a predefined 383

time slot as the unit. A time slot is denoted by U and it could 384

be 5 or 10 minutes. The actual running time would increase 385

as new requests are inserted into the route. So a request would 386

be rejected when, if it is accepted, the actual running time is 387

larger than the scheduled time. 388

C. Slack Time 389

Slack time is denoted by st (r) and defined as follows: 390

st (r) = r t (r) − t t (r) (2) 391

It is the extra time to serve on-demand requests within the 392

service area of the route. Also, the slack ratio is denoted by α: 393

α = st (r)

t t (r)
(3) 394

In this study we assume α > 0 is a predefined parameter for 395

all the routes in the flex transit system. The running time could 396

be calculated by the following formula: 397

r t (r) = �t t (r) ∗ (1 + α)� (4) 398

where �x� denotes the ceiling of the x in unit time slot. 399

D. Request 400

A request is denoted by req(t, o, d, w), where t is the time 401

when the request is submitted, o is the pickup location, d 402

is the dropoff location, and w is the constraint time window 403

for the pickup. A request might either be accepted or rejected 404

by the vehicle. 405
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Fig. 1. Illustration of a flex route u → v . The vehicle travels to pick up
demand-responsive riders, and drop them to station or stops that are nearest
to their destinations.

E. Service Area406

Service area is usually represented by an extended rectangle407

area along path u → v. The width of service area defines how408

far away from the standard route a vehicle may deviate to pick409

up or drop off passengers. Fig. 4 illustrates a flex route u → v410

and its service area.411

F. Operation Policies412

The vehicles are not required to follow a specific route413

and could have a different route from time to time. The only414

constraint in the service is that all flex routes are required to415

start and end at stations, and depart and arrive within their416

scheduled running time.417

We assume riders get on and off vehicles at the departure418

and destination stations. They also issue demand-responsive419

requests so that they can get on and off vehicles at some420

predetermined locations. We call these locations the dynamic421

stops, which are extracted from the trajectories logs. Request422

req(t, o, d, w) would be transformed to req(t, o′, d ′, w),423

where o′, d ′ are the nearest dynamic stops to locations o, d .424

The flex route system would calculate whether a request is425

compatible with a route. A request req(t, o, d, w) is compat-426

ible with a route r if it meets the following conditions:427

t + w(lc, o′) ∈ r.w; (5)428

cost (path(r)o′,d ′) ≤ r t (r) (6)429

where lc is the current location of vehicle, w(lc, o′) is the time430

cost of traveling from lc to o′, path(r)o′,d ′ is the path after431

inserting o′ and d ′ on route r . Condition (5) means the vehicle432

should travel to o′ to pick up the rider on its constraint time433

window w, condition (6) means the total traveling time of the434

path after inserting o′, d ′ should be within the running time of435

route r , i.e. r t (r).436

The flex route system would accept a request if the request437

is compatible with the route. Then the system would send an438

“accept” message to the rider and guide the rider to walk to439

o′ for the pickup. And the vehicle would drop off the rider440

at d ′, where the rider could walk to his/her destination. If the441

request is not compatible with the route, the system would442

send a “reject” message to the rider immediately.443

Fig. 2. Main steps of the data-driven flexible vehicle system.

IV. FLEXIBLE VEHICLE MODELLING 444

In this section, we present the detailed description of 445

the flexible vehicle system which consists of 4 steps: the 446

data preprocessing, the flexible route scheduling, the optimal 447

path calculation, and the request insertion (Fig. 2). The data 448

preprocessing step is described in the next section, while 449

the metrics that evaluate the designed transit service are first 450

introduced. 451

A. Performance Metrics 452

We aim to study the feasibility of a public vehicular system 453

that provides another public transportation method other than 454

the vehicle or responsive taxies. So in this study we use 455

the sharing amplifier (sa), rider delivery ratio (dr ), and the 456

average walking distance (wd) as three main metrics for the 457

performance measures. 458

The sharing amplifier sa is defined as follows: 459

sa =
∑

c∈F tl(c)∑
r∈D l(r.o, r.d)

(7) 460

where D is the set of successfully delivered requests, 461

l(r.o, r.d) is the distance of the shortest path from the origin 462

r.o to the destination r.d , F is the set of vehicles, and tl(c) is 463

the total traveling distance of vehicle c. sa actually represents 464

the average number of passengers sharing the vehicle in the 465

whole trip. The rider delivery ratio (dr ) is calculated as: 466

dr = |D|
|R| (8) 467

where |D| is the number of successful deliveries, |R| is the 468

number of all requests. The average walking distance wd is 469

calculated as: 470

wd =
∑

r∈D l(r.o, r.̂o) + l(r.d, r.d̂)

|D| (9) 471

where r.̂o, r.d̂ are the real pickup and dropoff locations for 472

request r . 473

Other factors such as the average waiting time and detour 474

ratio are also important indicators of the QoS (quality of 475

service) of passengers. We would discuss them at the experi- 476

mental analysis. 477
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TABLE I

MAIN NOTATIONS IN THE PAPER

B. Flexible Route Scheduling478

Given a flex route from station u to v, the operation time479

domain is split into n slots. For example, if there are 16 hours480

of operation time for the route, and each slot is two minutes,481

then there are n = 480 (16*60/2) time slots. xu
i j denotes the482

number of vehicles that are scheduled to depart from u at483

interval i and arrive v at interval j . Similarly, xv
i j denotes the484

number of vehicles that are scheduled to depart from v at485

interval i and arrive u at interval j . Fig. 3 illustrates the slots486

and trip scheduling problem. The scheduling is modelled as487

a Mixed-Integer Linear Programming (MILP) problem based488

on the historical demand of flows:489

minimize :
n∑
i

n∑
j

|Fu
i j − C ∗ xu

i j | + |Fv
i j − C ∗ xv

i j |490

(10)491

Fig. 3. Illustration of timeslots and trips corresponding to the flexible route
scheduling problem.

subject to: su
i+1 = su

i − xu
i j +

n∑
z=1

xv
zi , i = 1..n − 1 492

(11) 493

sv
i+1 = sv

i − xv
i j +

n∑
z=1

xu
zi , i = 1..n − 1 494

(12) 495

su
1 + sv

1 ≤ N (13) 496

0 ≤ su
i ≤ capu, i = 1..n (14) 497

0 ≤ sv
i ≤ capv, i = 1..n (15) 498

xu
i j , xv

i j ≥ 0, i = 1..n, j = 1..n (16) 499

The objective (10) is to minimise the gap between the 500

demand and supply of vehicle seats. Fu
i j is the number of 501

demand flow that departs from station u at interval i and 502

arrives at station v at interval j ; Fv
i j is the number of demand 503

flow that departs from station v at interval i and arrives at 504

station u at interval j . Fu
i j and Fv

i j are given as constant 505

variables for the model and we will discuss their calculation 506

in the next section. C is the supply of seats in a single vehicle, 507

which could be empirically calculated by cap ∗ κ , where cap 508

denotes the capacity of the vehicle and κ ≥ 1 denotes the 509

empirical factor as there are get-ons and get-offs during the 510

trip. 511

su
i denotes the number of vehicles at station u at interval i . 512

Constraints (11) and (12) imply the change of vehicles at u 513

and v at interval i by subtracting the departed vehicles and 514

adding the arrived vehicles. Constraint (13) ensures at the very 515

beginning vehicles at station u and v are within the range of N , 516

which is the number of vehicles of the fleet. Constraints (14) 517

and (15) imply the number of vehicles at station u and v 518

should be greater than zero and smaller than the capacity of 519

the stations, i.e. capu and capv . Constraint (16) defines the 520

value of the decision variables xu
i j and xv

i j , which should be 521

zero or positive integers. 522

The flow of trips is a key factor when scheduling the routes, 523

which are calculated based on the OD dataset. As mentioned 524

previously, the OD dataset contains origin and destination GPS 525

points, and the points are indexed by a set of grids on the map. 526

We further split the OD pairs by time slots, so the set of OD 527

pairs are stored and indexed according to spacial and temporal 528

dimensions. We use a table, denoted by �(z), for the storage, 529
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Fig. 4. Illustration of service area and subareas. The traffic flow is calculated
based on grids and OD points in the service area.

and each tuple is in the form < t, go, gd , num >, where z is530

the grid, t is the time slot, go, gd denote the grid of the origin531

and destination respectively, and num is the number of the532

corresponding OD pairs.533

Supposed the route under consideration is r(u, v, t), which534

is from station u to v and departs at time t . Then the trip flow535

Ft is then calculated as follows:536

1) Split the service area into subareas. K denotes the537

number of subareas and is calculated as:538

K = � tt (r) ∗ (1 + α)

U
� (17)539

where t t (r) is the traveling time of r and α is the540

slack ratio, U is the length of time slot unit. So the541

service area is equally split into K rectangle subareas542

{A1, A2, .., AK }, which is illustrated in Fig. 4.543

2) For each subarea Ai , get the set of its covered grids Gi .544

A grid g is covered by Ai if the following condition545

holds:546

ar(Ai ∩ g)

ar(g)
≥ θ (18)547

where ar(X) denotes the area of polygon X , θ ∈ [0, 1]548

is the a predefined threshold.549

3) For each grid z within subarea Ai , calculate its trip flow550

that begins at time t . The flow of a grid is defined as551

f g(z, t):552

f g(z, t) =
∑

x∈�(z)

x .num, x .t ∈ slot (t, i), x .gd ∈ G553

slot (t, i) = [t + (i − 1) ∗ U, t + i ∗ U),554

i = 1, 2, . . . , K (19)555

where x is a tuple in table �(z), G = G1∪G2 . . .∪GK is556

the set of all the grids in the service area of r ′, slot (t, i)557

is the i th time slot that begins at t and has an interval U .558

Then the weight of flow in subarea Ai that begins at559

time t is defined as:560

f w(Ai , t) =
∑
z∈Gi

f g(z, t) (20)561

4) Calculate the demand flow from u to v at time t , which562

is defined as follows:563

ft =
K∑

i=1

f w(Ai , t) (21)564

And ft is mapped to Fu
i j as follows: 565

Fu
i j =

{
ft , i = to_slot (t) and j = to_slot (t + r t (r))

0, i �= to_slot (t) or j �= to_slot (t + r t (r))
566

(22) 567

where to_slot (t) is a function that maps time t to the index 568

of time slot, r t (r) is the running time of vehicle that travels 569

along route r(u, v, t). Similarly, flow Fv
i j is calculated based 570

on route r(v, u, t) that departs v for u at time t . 571

C. Optimal Path of Flex Route 572

When a route r(u, v, t) is scheduled, information about its 573

departure time and destination would be notified to potential 574

riders. A rider might either go to the backbone stops to get 575

on the vehicle, or just send a request req(t, o, d, w) trying to 576

be picked up, where the request might be accepted or rejected 577

by the flex vehicle system. 578

We adopt a data-driven approach in this study. The pattern 579

of OD (origin-destination) pairs is mined to identify dynamic 580

stops. With a large number of origins and destinations of the 581

travel demands, we could cluster these points collectively to 582

represent potentially meaningful places. These places are the 583

potential locations for the stops. 584

The shared nearest neighbors (SNN) is adopted as the basis 585

of distance measure between two GPS points. Given two 586

points A and B, the distance is defined as: 587

dist (x, y) = 1 − w(Nk (x) ∩ Nk(y))

w(Nk (x) ∪ Nk(y))
(23) 588

where Nk(x) is the set of k nearest neighbours of x , w(Q) is 589

the total weight of points in set Q. This distance meets several 590

requirements for the spatial clustering of origin/destination 591

points: 1) a cluster would meet a minimum size constraint 592

k, and each cluster is spatially contiguous; 2) it preserves the 593

data resolution by constructing as many clusters as possible; 594

3) it identifies clusters of different point densities and different 595

shapes. So the summary statistics (e.g. net flow ratio) for each 596

cluster are meaningful and usually stable. 597

maximize :
∑
i∈V

x+
i (24) 598

x+
i ∈ [0, num+(i)] (25) 599

x−
i ∈ [0, num−(i)] (26) 600

f +
i + x+

i = f +
j (27) 601

f −
i + x−

i = f −
j (28) 602∑

(u, j )∈E

ai, j = 1, j ∈ V − v (29) 603

∑
(i,v)∈E

ai, j = 1, i ∈ V − u (30) 604

∑
(i, j )∈E

ai, j ≤ 1, i ∈ V − v (31) 605

∑
(i, j )∈E

ai, j ≤ 1, j ∈ V − u (32) 606

bi, j ≥ ai, j , i, j ∈ V (33) 607
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Fig. 5. Illustration of a route graph and the actual path of flex route. The
path consists of backbone stops, which are selected based on historical OD
data, and the ad-hoc stops, which are determined in real time.

bi, j + b j,i ≤ 1, i, j ∈ V (34)608

bi, j + b j, j ′ + b j ′, j ≤ 2, i, j ∈ V (35)609

e0 + f +
i − f +

i + x+
i − x−

i ≤ cp, i ∈ V610

(36)611 ∑
(i, j )∈E

ai, j ∗ t (i, j) < r t (r) (37)612

ai, j , bi, j ∈ {0, 1} (38)613

f +
i , f −

i ≥ 0 (39)614

Given a route r(u, v, t), and a set of stops Q within the615

service area W , we define finding the optimal path of this616

route as the OPFR problem (Optimal Path of Flex Route).617

First we model the stops in the service area as vertices in a618

directed graph Gr (V , E), which is also called the route graph.619

V is defined as {u, v} ∪ Q, an edge (i, j) is added to E if the620

distance l(i, j) is less than a threshold, where i, j ∈ V . Then621

finding a path in the service area can be modelled as a Mixed-622

Integer Linear Programming (MILP) problem.623

Table II denotes the meanings of the symbols. The goal (24)624

is to maximise the number of served requests. Constraint (25)625

and (26) ensure that the vehicle selectively picks up or drops626

off riders that belong to that stop. Constraint (27) and (28)627

imply the total number of picked or dropped riders when628

vehicle traverses the edge (i, j). Constraint (29) and (30) mean629

the path should start at u and end at v. Constraint (31) means630

any location from V − u has one successor, and (32) means631

any location from V − v has one precursor. Constraint (33)632

implies the relationship between ai, j and bi, j , which could633

be inferred from their definition. Constraint (34) implies that634

(i, j) and ( j, i) could not both on the path, constraint (35)635

implies no circles on the path. Constraint (36) ensures the636

number of riders is smaller than the vehicle capacity at any637

stop. Constraint (37) ensures that the cost of traveling time is638

less than the running time. Finally, constraints (38) and (39)639

define the nature of the variables.640

D. Origin-Destination Insertion Based on Backbone Stops641

The problem of finding optimal solutions for a flexible642

transit system is a dial-a-ride problem [15], [16] and is643

NP-complete. When real-time requests are received by the flex644

route system, the set of R changes accordingly, and the running645

TABLE II

NOTATIONS IN THE OPFR PROBLEM

time varies with the time. So in real situations the problem has 646

larger complexity with dynamic finite capacity and with more 647

constraints (e.g., time). In this section we present a heuristic 648

algorithm that integrates the historical OD patterns to construct 649

a path for the flex route. 650

1) Backbone Stops: The stations are divided into three types 651

with different degrees of popularity: the start/end stations, 652

backbone stops, and ordinary stops. Both backbone stops and 653

ordinary stops are mined from the request dataset, where 654

backbone stops are locations with more requests than other 655

locations. In more detail, clustering method is used to cluster 656

the requests of the whole area at a certain time, and the cluster 657

centers are mapped as stops in the road network. Flexible 658

vehicle would stop at the backbone stops, which provides some 659

certainty to the riders on the location dimension. Backbone 660

stops can also be manually designated if the operator considers 661

flexible vehicles must stop at some locations to pick up riders. 662

On the contrary, ordinary stops are candidate stops that might 663

not have so many requests; but if there are requests, the flexible 664

vehicles would still stop and pick up the requests. Whether 665

vehicles would stop at the ordinary stops or not depends on the 666

real-time requests, so the ordinary stops provide some degree 667

of flexibility to the route planning. 668

The service area of a flex route consists of K rectangle 669

subareas. For each subarea Ai of route r(u, v, t), we define a 670

backbone stop bsi : 671

bsi = argmax
s

{β ∗ N0(s) + (1 − β) ∗ N1(s) : s ∈ Si } 672

N0(s) = num+(s)+num−(s), N1(s)= f w(s.grid, t) 673

(40) 674

where β ∈ [0, 1] is a balance factor, Si is the set of stops within 675

the subarea Ai . N0(s) is the number of currently received 676

pickup and dropoff requests at stop s, N1(s) is the flow weight 677

of s.grid , which is denoted by f w(s.grid, t) and defined 678

at (19). Here s.grid is the grid that s belongs to. 679

The set of backbone stops together with the stations u, v 680

are denoted by BS = {bs0, bs1, bs2, . . . bsK , bsK+1}, where 681

bs0 = u, bsK+1 = v. Stops in BS are arranged in topological 682
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order of the directed acyclic graph, and the shortest path683

{bsi → bsi+1} between bsi and bsi+1, i = 0, . . . , K could be684

calculated. So the initial path for the flex route is generated by685

iteratively connecting the backbone stops and their temporary686

stops between them. As illustrated in Fig. 6(a), the shortest687

path between a and e is (a − d − e), so d is also added to the688

path of the route. We denote the path of route r by path(r) and689

denote the set of all stops in path(r) by S(path, r). As there690

is only one backbone stop at each subarea within the service691

area, we assume that initial path(r) would always satisfy the692

running time constraint.693

2) Path Insertion: The initial path is then extended, i.e. new694

pickup and dropoff stops are inserted into the path, as new695

requests are coming in. Give a request req(o, d, w), suppose696

o′ and d ′ are the nearest stops to o and d , and d ′ is behind697

o′ in topological order, there are three cases when inserting698

stops to the path:699

• When both o′ and d ′ are in set S(path, r), the request is700

immediately accepted. The insertion of request does not701

add extra cost to the path. If o′ or d ′ is not a backbone702

stop, it becomes a backbone stop, and the stop is moved703

to BS.704

• When only one stop, either o′ or d ′, is in BS, the flex705

route system would check whether the stop is feasible to706

be added to the path. Without loss of generality, suppose707

the dropoff stop d ′ is already in the path, yet the pickup708

stop o′ is to be checked. Suppose the subarea that contains709

o′ is Ai , and the set of backbone stops in path(r) con-710

tained in Ai is BS(Ai) = {bs j+1, bs j+2, .., bs j+m}, then711

the possible insertion positions are: I0, I1, I2, . . . , Im ,712

where Ik = (bs j+k, bs j+k+1), k = 0, 1, . . . , m, and713

bs j is the last backbone stop at subarea Ai−1. Fig. 6714

illustrates an example of an insertion into the path, where715

(a, e), (e, f ), ( f, g) are the possible insertion positions716

for stop c.717

For every possible insertion position, a new path is built718

to contain the new requested stop o′. The new path after719

insertion at Ix is denoted by path(r)x , and the insertion720

position is selected by the following formula:721

k1 = argmin
x

{cost (path(r)x) : cost (path(r)x)<r t (r),722

x = 0, . . . , m}723

(41)724

where cost (path(r)x) is the cost of traveling along725

path path(r)x , r t (r) is the running time of route r .726

The path with insertion Ik1 has the least traveling time.727

The path is selected and it is feasible, i.e. meets the728

running time constraint.729

If there is a feasible path after insertion, the request would730

be accepted; otherwise, the request would be rejected.731

When o′ is inserted at Ik1 = (bs j+k1, bs j+k1+1), stop o′
732

is added to BS and the path is updated by following733

operations:734

path(r, o′) = path(r)−{bs j+k1 →bs j+k1+1}735

path(r, o′) = path(r)+{bs j+k1 →o′}+{o′ → bs j+k1+1}736

(42)737

Fig. 6. An example of an insertion into the path. (a, e), (e, f ), ( f, g) are
the possible insertion positions for stop c. Yet (a, e) is the insertion position,
new paths are built by adding shortest paths a → c and c → e, and removing
a → e.

where {a → b} is the shortest path from a to b. In Fig. 6, 738

(a, e) is the insertion position, new paths are built by 739

adding shortest paths a → c and c → e, and removing 740

a → e. 741

• When both stop o′ or stop d ′ are not in BS, two insertion 742

positions are identified and the feasibility of a new path 743

after insertions is checked. The insert procedure is similar 744

to case (2). Suppose the subarea that contains o′ is Ai , 745

and the set of backbone stops in path(r) contained in 746

Ai is BS(Ai ) = {bs j+1, bs j+2, .., bs j+m}. The possible 747

insert position of o′ is defined as I0, I1, I2, . . . , Im , where 748

Ik = (bs j+k, bs j+k+1), k = 0, 1, . . . , m, and bs j is the 749

last backbone stop at subarea Ai−1. Similarly, we define 750

the subarea that contains d ′ as Ai ′ , and the possible insert 751

positions of d ′ is defined as I ′
0, I ′

1, I ′
2, . . . , I ′

n , where 752

I ′
k = (bs j ′+k, bs j ′+k+1), k = 0, 1, . . . , n. bs j ′ is the last 753

backbone stop at subarea Ai ′−1. Then the insert positions 754

for o′ and d ′ are calculated by the following formula: 755

(k1, k2) = argmin
(x,y)

{cost (path(r)x,y) : 756

cost (path(r)x,y) < r t (r)}, 757

× x = 0, . . . , m, y = 0, . . . , n (43) 758

where path(r)x,y denotes the path of r if inserting o′ at 759

Ix and d ′ at Iy . Only when both insertions are allowed, 760

the request is accepted; otherwise, the request is rejected. 761

The stops would be added to set BS if the request is 762

accepted. 763

3) Algorithm Description: Algorithm 1 in the Appendix is 764

the pseudocode of the origin-destination insertion algorithm 765

based on the backbone stops. 766

V. PERFORMANCE EVALUATION 767

We conducted experiments on real-world road networks and 768

trajectory datasets to verify the performance of the proposed 769

scheme. The schemes are implemented in Java 1.8 and experi- 770

ments are run on a notebook computer with Intel Core i7 CPU, 771

2.6 GHz, 16 G RAM under Windows 10. 772

A. Environmental Setup 773

1) Road Networks: The road network of the Xiamen City, 774

Fujian Province, China is used for the simulation, which con- 775

tains 24750 road vertices and 32364 road segments. By default, 776

we set the average vehicle speed to 35 km/h in the urban 777

area and set the traveling time of each road segment as its 778
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Fig. 7. Distributions of origins (in red) and destinations (in green) of trips
during 6:00 a.m. to 10:00 a.m. on July 2, 2014 in the Xiamen Island, Fujian
Province, China.

weight. We get the map of the Xiamen city ([118.0660E,779

118.1980E]*[24.4240N, 24.5600N]) from OpenStreetMap and780

load the graph into the memory using the JGraphT framework1
781

1.3.0 so as to make efficient shortest path queries on the road782

network. The road network is divided into 100*100 grids,783

which is to facilitate the calculation of the request density784

and stops of different regions.785

2) Datasets: It is hard to forecast the transit demand of786

requests for flexible vehicles or customized buses due to the787

lack of real-world OD datasets that reflects the pattern of788

requests. But as there is a large overlap on the customers789

of taxies and flexible vehicles, in this research we adopt the790

Xiamen Taxi Dataset2 for the simulation, which consists of791

one-month trajectory data of about 5,000 taxicabs in Xiamen792

city, China during July 2014. There are about 220 million793

GPS position records and 8 million live trips. The trajectory794

reporting frequency is 1–2 times per minute. For this simula-795

tion we extracted trajectory data from 6:00 a.m. to 10:00 a.m.796

on July 2, 2014, including 59311 trajectories for performance797

evaluation. Fig. 7 shows the distribution of GPS points in the798

dataset.799

B. Data Preprocessing800

The stops are mined from the trajectory dataset, and the801

preprocessing includes three steps: 1) matching GPS points;802

2) calculating the flow of passengers in each grid, 3) defining803

the service area, and 4) identifying the backbone stops.804

1) Matching GPS Points: For each GPS record, it is ineffi-805

cient to match every possible road segment. Rather, we only806

need to identify a few road segments that cover all possible807

segments for the GPS record while filtering others. According808

to [41], [42], GPS location errors can be as large as 100 meters809

in a city with dense tall buildings and viaducts. 100 meters can810

be roughly regarded as 0.001 latitude or longitude. So imaging811

there is a circle of radius 0.001 latitude or longitude centered812

at the GPS record, the GPS record can only reside on the813

1https://jgrapht.org/
2http://mocom.xmu.edu.cn/project/show/xmdataset

Fig. 8. The maximum distance appears when the road segment is tangent to
the circle and the tangent point turns to be the midpoint.

Fig. 9. Terminal stations u, v(in blue) and service area (rectangle in black,
with 8.91 km in length and 0.8 km in width) in the Xiamen City, China. The
map is divided into 10000 grids (in light grey), and the backbone stations are
illustrated by stars.

road segments that intersect or tangent to the circle. From our 814

investigation, 99.27% road segments in our road network are 815

less than 0.005 latitude or longitude long. Such a circumstance 816

is described in Fig. 8. The maximum distance appears when 817

the road segment is tangent to the circle. 818

We test each road segment on the following criteria: whether 819

there exists a road segment that meets the condition that the 820

distance between the endpoint and the GPS record is less than 821

0.0027 latitude or longitude long. For most cases, the GPS 822

record would select the nearest road segment. But in some 823

cases, the timestamps of the GPS record are also considered 824

to discard anomalies or to select the road segments. When the 825

forward and backward conjunctive GPS records reside at the 826

same road segment, then the middle GPS point would locate at 827

the same road segment. Once the road segment is determined, 828

the tangent point to the circle is set to be the calibrated GPS 829

point. But if the GPS is more than 0.0027 latitude or longitude 830

long away from the road segment, it would be discarded. 831

2) Calculate the Flow of Passengers: The road network 832

is divided into 10000 (100 * 100) grids. The GPS locations 833

of origin-destination pairs are calibrated and mapped to the 834

nearest vertexes in the road network. The flow of passengers 835

is calculated by accumulating the number of origins or des- 836

tinations within the grid. The time of each request is set w 837

earlier according to the constraint of pickup window. 838

3) Define the Service Area: The terminal station u and v 839

are defined as in Fig. 9, where the width is set as 1.6 km, 840

and the time unit U is set to 5 minutes to divide the service 841

domain into subareas according to Eq. 17. The slack ratio (α) 842

of the flex route is set 0.6. 843
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4) Identify Backbone Stops: The backbone stops are calcu-844

lated according to Eq. 18-22 in each subarea. The threshold845

θ and β are 0.5, and the values of them are standardized in846

range [0, 1] to make N0(s) and N1(s) in the same order of847

magnitude. Fig. 9 illustrates the service area and backbone848

stops.849

C. Compared Schemes and Metrics850

Besides the proposed Flex vehicle scheme, other851

origin-destination insertion schemes and scheduling schemes852

are also conducted for performance comparison.853

1) Insertion Schemes:854

• Fixed pickup/pickoff (fixed): pickup and pickoff passen-855

gers along fixed stations. Stops between u and v locate856

300 meters away from their adjacent stops.857

• Greedy algorithm with origin-destination insertion858

(greedy): according to the topological order of the stops859

in the road network, the adjacent stops with the most860

requests and their corresponding destination stops are861

selected to be inserted to the route.862

• Probability-based spreading (B-planner [19]): cluster863

“hot” areas and split hot areas into clusters to iden-864

tify candidate vehicle stops. It uses a bidirectional865

probability-based spreading algorithm to generate candi-866

date vehicle routes, and adds constraints of time window867

to the requests.868

• Heuristic backbone-based origin-destination insertion869

algorithm (backbone): it is the insertion algorithm pro-870

posed in this paper.871

2) Scheduling Schemes: Besides the milp scheduling872

described in section IV, two other scheduling schemes are also873

implemented for comparison:874

• Fixed time slot scheduling (fixed-slot): set a fixed depar-875

ture interval for adjacent vehicles. It serves as the baseline876

of the schemes.877

• Genetic algorithm-based scheduling (genetic): setting the878

operating cost as the objective value, it uses the genetic879

algorithm to construct the scheduling model.880

3) Traveling Schemes: Different insertion and scheduling881

schemes are combined to form traveling schemes. Besides the882

proposed Flex vehicle system, which is actually a combination883

of the backbone insertion scheme and milp scheduling scheme884

(backbone-milp), we also conduct other three vehicle traveling885

schemes for comparison.886

• fixed-fixed-slot: vehicle traveling along fixed stations and887

scheduling according to fixed time slots scheme.888

• fixed-milp: vehicle traveling along fixed stations and889

scheduling according to the milp scheme.890

• backbone-fixed-slot: vehicle traveling according to the891

backbone insertion scheme and scheduling according to892

the fixed-slot scheme.893

• backbone-genetic: vehicle traveling according to the894

backbone insertion scheme and scheduling according to895

the genetic scheme.896

4) Metrics: The sharing amplifier (sa), rider delivery ratio897

(dr ), and the average walking distance (wd) are three main898

TABLE III

PERFORMANCE OF THE TRAVELING SCHEMES

metrics introduced in Section IV.A. As we aim to study the 899

gap between the demand and supply of vehicle seats, the value 900

of (10), denoted as seat-request-gap (srg), and the operating 901

costs (oc) are adopted as metrics for the scheduling. srg is 902

defined as: 903

srg =
n∑
i

n∑
j

|Fu
i j − C ∗ xu

i j | + |Fv
i j − C ∗ xv

i j | (44) 904

And the calculation of operating cost is as follows: 905

oc = δ ∗ wc + (1 − δ) ∗ tc (45) 906

where δ ∈ [0, 1] is a balance factor, wc and tc are the 907

waiting cost of passengers and the traveling cost of vehicles 908

respectively. wc is calculated according to the average monthly 909

income of Xiamen: 910

wc = wage

21.42 ∗ 8 ∗ 60
(46) 911

where wage is the average monthly wage, which is to be 912

divided by the average working days per month (21.42), the 913

working hours per day (8), and the minutes per hour (60). The 914

traveling cost tc is obtained from historical vehicle operation 915

data. In this research δ is set 0.5, wage is 8000 RMB per 916

month, and tc is 6.14 RMB/km. 917

D. Experimental Analysis 918

1) Overall Performance: There are 10 vehicles deployed 919

by default, where each terminal station u and v has 5 vehicles 920

scheduled for operation at the initial time, i.e. capu and capv
921

are both set 5. The capacity of the vehicle cap is 35, the 922

empirical factor κ is 1.5, the slack ratio α is 0.6, and the pick 923

up time window is set to 10 minutes, U is set to 10 minutes 924

by default. 925

Table III shows the overall performance of the five different 926

traveling systems. The simulation was conducted based on the 927

Xiamen Taxi Dataset from 6:00 am to 10:00 am on July 2, 928

2014. The backbone-milp and backbone-genetic have the high- 929

est sharing amplifier, which are 7.37 and 5.88 respectively. 930

Meanwhile, backbone-milp has the highest delivery ratio at 931

50.51%, which is about 170% higher than the fixed-fixed- 932

slot scheme. The backbone-milp scheme also has the shortest 933

average waiting time at 6.22 minutes, and the average walking 934
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TABLE IV

PERFORMANCE OF THE OD INSERTION SCHEMES

distance is 153.87 meters. The fixed-fixed-slot scheme is set as935

the baseline. It can be found that when the scheduling scheme936

is changed from fixed-slot to milp, the sharing amplifier and937

delivery ratio increase by about 48% and 40% respectively.938

This is mainly because milp would schedule more vehicles939

when there is more demand in service area to maximize the940

objective function. When changing the traveling scheme to the941

proposed backbone scheme, the average walking distance of942

passengers is reduced by about 38%. The stops in the backbone943

scheme are carefully calculated and generated from mining944

the historical request data, therefore it reduces the paths945

passengers travel. Meanwhile, the sharing amplifier increases946

by 127% as the backbone scheme responds to the requests947

in a more immediate way and can fulfil more demands.948

The average waiting time is reduced by about 39%, due to949

the fact that backbone minimizes the time loss caused by950

each newly added origin-destination pairs and a delay time951

window is set. From the performance comparison, we can see952

that the proposed data-driven insertion scheme and optimized953

scheduling scheme together bring higher benefits to the vehicle954

operation.955

To study the performance of the insertion schemes, the956

number of trips is set to 1. Table IV displays the overall957

performance of different insertion schemes when the vehicle958

only goes once from u to v. The backbone scheme has959

the highest sharing amplifier at 7.10, which is about 129%960

and 37% higher than fixed and B-planner respectively. The961

backbone scheme also has the highest delivery ratio, which is962

about 136% and 107% higher than the fixed and B-planner963

scheme. This is because vehicles in the backbone scheme964

do not stop at the fixed stop, the flexibility provides more965

opportunities for nearby requests to be fulfilled. The greedy966

scheme has the lowest delivery ratio, as it inserts stops that967

have the highest number of requests and this may miss requests968

in other locations. The average walking distance of passengers969

received by vehicles in backbone and B-planner is 154.12 and970

157.00 meters respectively, which is about 39% less than that971

of fixed. The main reason is that the set of stops in backbone972

and B-planner are both mined from the historical request data,973

where the surrounding areas of these stops have high request974

density. Passengers can reach the nearest vehicle stops with a975

shorter distance. Also, the backbone scheme has the shortest976

average waiting time for passengers at 5.55 minutes, about977

56% shorter than that of the f i xed scheme.978

Table V displays the performance of three different schedul-979

ing schemes when the insertion scheme is fixed, i.e. adopting980

the fixed scheme from 6:00 a.m. to 10:00 a.m. on July 2, 2014.981

TABLE V

PERFORMANCE OF THE SCHEDULING SCHEMES

The milp scheme has the minimal gap between the number of 982

seats and the requests, which is about 53% and 21% lower 983

than that of the fixed-slot and genetic scheduling scheme. 984

Meanwhile, it has the highest delivery ratio at 26.95%. The 985

genetic scheme has the lowest operating cost, which is 1700.8 986

RM B . Compared with fixed-slot, the gap between the demand 987

and supply of vehicle seats is reduced by more than 40% when 988

adopting the genetic and milp schemes. This is because both 989

the genetic and milp schemes have the flexibility to adopt to 990

the requests of passengers. The goal of the genetic scheme 991

is to minimize the operating cost of vehicles, so when there 992

are fewer demands generated in the service area, less vehicles 993

will be provided. Similarly, the milp scheme sets this gap as 994

its objective function. The genetic and milp schemes also have 995

a delivery ratio about 8% higher than that of the fixed-slot 996

scheme, since when there are more requests in the service 997

area, more vehicles would be scheduled for passengers to be 998

picked up. The overall operating cost of vehicles is also shown 999

in Table V. The genetic scheme has the lowest operating cost 1000

as we set the operating costs of vehicles as objective function. 1001

Also, the proposed milp scheme has lower operating cost than 1002

that of the fixed-slot scheme owing to the flexibility of vehicle 1003

scheduling. 1004

2) Impact Factors: We also vary several critical factors, i.e., 1005

the slack ratio α, the width of service area, and the length of 1006

pick up time window to study their impact on the proposed 1007

scheme. 1008

Fig. 10 depicts the impact of slack ratio α. When α 1009

increases, the sharing amplifier and the delivery ratio both 1010

increase for the backbone and greedy schemes. Larger α means 1011

longer travelling time, so requests have more opportunity to be 1012

accepted. Also, when α is set at some value, e.g. 0.8, 1.1 and 1013

1.7, some requests with shorter distance are also fulfilled 1014

in this scenario, so the sharing amplifier decreases slightly 1015

according to its definition defined at Eq. 7. The backbone 1016

scheme also outperforms greedy on the sharing amplifier and 1017

delivery ratio, especially when α becomes higher. Larger α 1018

means more chances for the proposed algorithm to optimise 1019

the insertion, and more requests could be accepted. Pas- 1020

sengers’ average walking distance on backbone and greedy 1021

reaches its minimal when α is 0.4, which are 144.09 and 1022

160.43 respectively. Also, the passengers’ average waiting 1023

time fluctuates as α increases. When more travelling time 1024

is provided, stops far away from the initial path can now 1025

be inserted, yet it also means the vehicle needs to take 1026

longer to reach these stops. The average waiting time of 1027

backbone reaches the minimum value when α is 1.4, which 1028

is 3.95 minutes. On the contrary, the average waiting time 1029
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Fig. 10. Impact of slack ratio α on (a) sharing amplifier, (b) delivery ratio, (c) the average walking distance, and (d) the average waiting time.

Fig. 11. Impact of the length of subarea U on the (a) sharing amplifier and
(b) delivery ratio.

of greedy increases with α, which is because the time loss1030

brought from inserting stops with the most number of requests1031

is amplified when α increases.1032

Fig. 11 depicts the impact of the length of the subarea (U )1033

on the sharing amplifier and delivery ratio. We can find that1034

when U grows from 4 minutes to 12 minutes, the sharing1035

amplifier increases from 4.61 to 7.02. A larger U means larger1036

subarea, and hence fewer backbone stops that the vehicle1037

should visit. So the route would have more flexibility and the1038

sharing amplifier would increase. The sharing amplifier then1039

goes to be stable, this is mainly due to the time constraint of1040

the flexible route which makes it hard to accept more requests.1041

Accordingly, the delivery ratio reaches a maximum value when1042

U is about 8 minutes, and then goes down as the subarea grows1043

larger.1044

Fig. 12 illustrates the impact of the pickup time window1045

on the sharing amplifier and delivery ratio. We can find that1046

the sharing amplifier increases significantly when the length of1047

time window increases from 2 minutes to 6 minutes. After that,1048

the increase on the length of time window has little impact. But1049

as the length of time window increases, the delivery ratio also1050

increases as longer waiting time gives requests more chance1051

to be accepted.1052

We also vary the number of seats in a single vehicle cap1053

and the number of planned vehicles N to study their impact on1054

the resource utilization and the delivery ratio of the proposed1055

scheme. The fixed travelling scheme is adopted by default,1056

and cap is set from 0 to 30 and N is set from 0 to 20. From1057

Fig. 13 (a), we can see that the gap between the seats and1058

the requests decreases with cap and N . When more vehicles1059

or more seats are provided, requests have a higher chance to1060

be accepted. Fig. 13 (b) illustrates the impact of capacity of1061

a vehicle on the delivery ratio. The delivery ratio increases1062

Fig. 12. Impact of length of pick up time window on (a) sharing amplifier
and (b) delivery ratio.

Fig. 13. Impact of the number of seats in a single vehicle cap and the
number of planned vehicles N on the (a) seats-requests-gap, and (b) delivery
ratio.

with the number of seats in a vehicle and the number of 1063

available vehicles. More seats and more vehicles mean more 1064

requests can be accepted. However, small fluctuations occur 1065

on the delivery, which is because the objective function of the 1066

milp would make the provided resources of seats be as close 1067

as possible to the actual flow of passengers. 1068

VI. CONCLUSION 1069

We propose a data-driven flexible transit system that inte- 1070

grates the origin-destination insertion algorithm and the milp- 1071
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based scheduling scheme. The historical patterns of the request1072

datasets are mined to efficiently construct a path for the1073

flex route, and the time loss caused by the optimal inser-1074

tion position of origin and destination of new request is1075

calculated to decide whether to receive the request. And a1076

vehicle scheduling model that minimises the gap between the1077

passenger flow and available seats is adopted to reduce the1078

operation cost. Experimental results show that the proposed1079

flexible transit system can effectively increase the delivery1080

ratio and decrease the passengers’ waiting time compared with1081

existing fixed or flexible transit systems.1082

The combination of flexibility and high sharing rate of this1083

research is consistent with the development concept of “smart1084

and green city”, where resources are fully utilized and the1085

cost of transportation is reduced. Our approach could evolve1086

with the pattern of requests by adjusting the stop locations and1087

the scheduling of vehicles. One drawback of our approach is1088

that it needs extra tasks of data collection and pre-processing,1089

which adds some degree of complexity to the whole public1090

vehicle transportation system. The flexible vehicles system1091

proposed in this research could be viewed as a special kind1092

of the demand-responsive or Taxi system. If we can obtain1093

more sources of data: existing transit modes, taxis, and other1094

similar services such as uber/lyft, we would be able to estimate1095

the demand and test our scheme in real-world scenarios. For1096

the future work, we are going to investigate other factors, e.g.1097

request priority and passenger utility, and propose efficient1098

algorithms to recommend optimized pickup stops for riders to1099

improve the overall quality of service of the transit system.1100

Also, we are to study the problem of multi-line flexible transit1101

system optimization in a data-driven approach.1102
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