Future Generation Computer Systems 94 (2019) 237-249

o . . . e =
Contents lists available at ScienceDirect
FiBICIS!
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs =
CASQ: Adaptive and cloud-assisted query processing in vehicular N
{: Check for
sensor networks™
Yongxuan Lai *** Lu Zhang ®°, Fan Yang¢, Lv Zheng *°, Tian Wang ¢, Kuan-Ching Li ©
2 Shenzhen Research Institute, Xiamen University, Shenzhen 518000, China
b Software School, Xiamen University, Xiamen 361005, China
¢ Department of Automation, Xiamen University, Xiamen 361005, China
4 College of Computer Science and Technology, Huagiao University, Xiamen 361021, China
€ Department of Computer Science and Information Engineering, Providence University, Taichung 43301, Taiwan
ARTICLE INFO ABSTRACT
Article history: Vehicles in urban cities are equipped with increasing more sensing units. Large amount of data are con-
Received 31 January 2018 tinuously generated and they bring great potentials to the intelligent and green city traffic management.
Received in revised form 20 October 2018 However, data gathering and query processing remain key and challenging issues due to the huge amount

Accepted 26 November 2018

Available online 1 December 2018 of sensing data, changeable road conditions, rapid network topology and density changes caused by

the movement of vehicles. There is great necessity for the cloud and the vehicular sensor networks to

Keywords: integrate and enhance each other on the cooperative urban sensing applications. In this paper we propose
Cloud-assisted an adaptive and cloud-assisted query processing scheme for VANETs, that adopts the concept of edge
Query result forwarding nodes and integrates the cloud and vehicular networks to facilitate data storage and indexing, so queries
Data storage could be processed and forwarded along different communication channels according to the cost and

Query processing

VANETS time bounds of the queries. Moreover, the cloud calculates result forwarding strategy by solving a Linear

Programming problem, where the query results select the best path either through the 4G channel or
through the DSRC (Dedicated Short Range Communication). This research is one of the first steps towards
the integration of the cloud and the vehicular networks, as well as edge nodes and the 4G channel,
to improve the effectiveness and efficiency of the query processing in VANETSs. Extensive experiments
demonstrate that up to 94% of the queries could be successfully processed in the proposed scheme, much
higher than existing query schemes, while at the same time with a relatively low querying cost.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction vehicular ad-hoc sensing networks (VANETSs) have emerged [7-9].
Vehicles traveling on the road exchange information with nearby
Vehicular nodes are equipped with more and more sensing vehicles through the V2V (vehicle to vehicle) and V2I (vehicle to
units, and large amount of sensing data such as GPS locations, infrastructure) communications, and data can be disseminated to
speed, video clips, and emission values of greenhou.se gases are reach far distance by using moving cars as intermediates, following
generated [1,2]. These data are shared or uploaded as input for ap- multi-hop routing protocols
plications that aim at more mtelhgent transportgtlon, more emer- Nevertheless, vehicular data gathering or query processing re-
gent responses, and more reduction on pollution and fuel con- . . .
- A ; . mains a key and challenging issue in VANETs. On one hand, ve-
sumption. This brings about the concept of cooperative vehicular
hicular nodes are limited to road topology while moving, where

sensing, which is at the heart of intelligent transportation and) ’
green traffic management system [3,4]. Key components of the the network usually suffers rapid topology and density changes

system are a combination of pervasive vehicular sensing system under various road conditions and high moving speeds, so the com-
and a central control and analyzing system [5,6], and recently munications are usually fragmented and intermittent-connected.
On the other hand, vehicular sensed data are in large volume and

% This research is supported by the Natural Science Foundation of c.haracterlzed as continuous generatlgn. The sensed data should be
China (61672441, 61872154), the Shenzhen Basic Research Program, China filtered and pre-processed before being shared or uploaded, data

(J€YJ20170818141325209), the National Key Technology Support Program, China filtering and query processing technologies that tailored to the
(2015BAH16FF01), and the State Scholarship Fund of China Scholarship Council VANET environment are highly required [4].

(201706315020).) .
* Corresponding authors. Generally speaking, there are two key strategies for data gath-
E-mail addresses: laiyx@xmu.edu.cn (Y. Lai), wangtian@hqu.edu.cn (T. Wang). ering in VANETSs: the push and the pull, which are similar to those

https://doi.org/10.1016/j.future.2018.11.034
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.11.034
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.11.034&domain=pdf
mailto:laiyx@xmu.edu.cn
mailto:wangtian@hqu.edu.cn
https://doi.org/10.1016/j.future.2018.11.034

238 Y. Lai, L. Zhang, F. Yang et al. / Future Generation Computer Systems 94 (2019) 237-249

considered in the field of distributed and mobile databases [10-
12].In a push-based model, each vehicle senses the data and proac-
tively uploads them to a central server through V2V or V2I com-
munications [13,14]. As a node receives data from its encountered
nodes, it has to decide whether the data are relevant or not. The
node might incur unneeded overheads such as duplicate messages
or irrelevant data. In a pull-based model, queries are submitted
from ordinary nodes or the cloud [15,16]. Vehicles should be able
to interpret, route, and process those queries, and route back the
query results to query requesters.

Pull-based model provides more flexibility in terms of types
of queries [17]. As queries could in principle be diffused far away
to retrieve remote data in the pull-based model, there are three
steps in the query processing: (1) query requester diffuses the
query to different data sources, either directly or by using multi-
hop relaying techniques; (2) each node that receives the query
computes a partial query result based on its local data; and (3)
nodes route the query result to the query requester. However, most
of existing pull-based query schemes assume no fixed data server
available in VANETSs, since they only consider the resource of the
in-network vehicular nodes [16-18]. Inevitably, those approaches
incur relatively large query delays. Moreover, routing the query
results back to the query originator is a challenging problem in
VANETs because the query requester is moving in the meanwhile.
The performance degrades when routing results to the query re-
quester merely based on simply deducing the geographic locations
in the field.

To overcome these drawbacks of existing query processing
schemes in VANETSs, we propose an efficient scheme namely CASQ
(Cloud-Assisted data Storage and Query Processing) in this paper,
to take advantage of the fog/edge nodes, and integrate the cloud
and vehicular networks to facilitate data storage and indexing,
so queries could be processed and forwarded along to different
communication channels, including the 4G and DSRC (Dedicated
Short Range Communication [19]), according to the cost and time
bounds of the queries. Queries are firstly uploaded to the cloud
and are directed to edge nodes (also called RSU, road side units)
to extract query results. The cloud then computes a strategy of
result forwarding by solving a QRF problem (query result forwarding
problem) that defines how to deliver the query results through their
best paths, either through the 4G channel or through the DSRC
communications. Query results are diffused to a set of RSUs that the
query requester would visit along its travel path, and the requester
could fetch results from these nodes before the query is outdated.

The main challenges lie in two aspects: (1) the data should
be stored and indexed in way that queries could be directed to
the RSUs to access the query results efficiently and quickly, and
(2) query results should timely be forwarded back to the query
requester, who is moving and expects to fetch the query results
on its way to the destination. The ordinary nodes, edge nodes
(RSUs) and the cloud should cooperate with each other to process
the query, and the forwarding mechanism of queries and results
should be well designed. The main contributions of this paper are
as follows:

1. We propose a query processing scheme called CASQ that in-
tegrates the cloud/edge computing and vehicular networks.
The proposed scheme takes advantage of resources at the
cloud and edge nodes to cooperatively store and index data,
so that queries could be processed efficiently and timely.
Data readings are stored at local nodes or RSUs, and indexed
by the cloud; queries are processed at the cloud and directed
to RSUs to extract the query results.

2. We map the query result forwarding problem into a lin-
ear programming problem that could be solved efficiently,
where the query results choose their best paths either

through the 4G or the DSRC. Query results are then able to
be diffused to RSUs along the traveling path of the query
requester, so the query requester could fetch the results
just before the query is outdated. In addition, we adopt a
priority-based strategy for the management of data seg-
ments and update the indexes accordingly at the cloud. The
proposed scheme manages the limited storage of RSUs and
keeps a up to date list of index entries simultaneously.

3. We conduct experiments based on real trajectory data and
simulations to demonstrate the effectiveness of the pro-
posed algorithm in vehicular sensing applications. Up to 94%
of the queries could be successfully processed in the pro-
posed scheme, much higher than existing query schemes,
while relatively low query cost at the same time.

To the best of our knowledge, this paper is the first report on
the integration of the cloud, the edge nodes in vehicular networks,
and the 4G communications channels to improve the effectiveness
and speeding up of the query processing in VANETSs. The rest of
the paper is structured as follows. Section 2 describes the related
work, Section 3 introduces some preliminaries and defines the
network model, and Section 4 presents the detailed description
of the CASQ algorithm, including data storage, indexing, and the
query processing. Section 5 describes the environmental setup and
analyzes the simulation results, and finally, Section 6 concludes the

paper.
2. Related work

Vehicles could be viewed as powerful mobile sensors. Recent
researches have addressed the problem of data and information
gathering in vehicular networks. Zhao et al. [3] proposed sev-
eral vehicle-assisted data delivery (VADD) protocols to forward
the packets to the best road with the lowest data-delivery delay,
among which the hybrid probe (H-VADD) protocol has a much
better performance. Lee et al. [13] proposed the MobEyes system
for proactive urban monitoring. The system exploits the vehicle
mobility to opportunistically diffuse concise summaries of the
sensed data, so it harvests these summaries and builds a low-cost
distributed index of the stored data to support various applica-
tions. Palazzi et al. [14] proposed a delay-bounded vehicular data
gathering approach that exploits the time interval to harvest data
from the region of interest satisfying specified time constraints,
and properly alternates the data muling and multi-hop forwarding
strategies. Nevertheless, the solution has to be integrated with
a geocast protocol for the query propagation, which incurs large
time delay. Lai et al. [4] proposed a fog-based two-level threshold
strategy to gather data of events in VANETs. In the monitoring
phase, nodes sense the environment in low cost sensing mode and
generate sensed data. Whenever the probability of event exceeds
some threshold, nodes transfer to the event-checking phase. Some
nodes are selected to transfer to the deep sensing mode to generate
more accurate data of the environment.

Several other works have addressed query processing in ve-
hicular networks. PeopleNet [15] is an infrastructure proposal for
information exchange in a mobile environment. It relies on the
existence of a fixed network infrastructure to send a query to an
area that may contain relevant information. Lee et al. [16] proposed
the FleaNet scheme, a mobility assisted query dissemination where
the node that submitted a query periodically advertises it only to its
one-hop neighbors and looking forward if they can provide some
answers from information stored on their local storage. Similar to
FleaNet, Roadcast [18] is a content sharing scheme for VANETS,
and it queries other vehicles that it encounters on the way. The
keyword-based queries are submitted by the users and the scheme
tries to return the most popular content relevant to the query.
Differed to the proposed CASQ scheme, FleaNet and Roadcast only

Y. Lai, L. Zhang, F. Yang et al. / Future Generation Computer Systems 94 (2019) 237-249 239

query from the one-hop neighbors, the ratio of successful queries
is relatively low, and they do not need to consider the problem of
routing back the query results.

Xuetal.[20] considered the problem of searching documents in
a vehicular network. They adapted the concept of Distributed Hash
Table (DHT) [21] to a mobile environment and proposed a Hybrid
Retrieval (HR) approach that selects between a flooding or a DHT
scheme for indexing and searching based on the expected costs.
Similar to [20], Delot et al. [17] proposed the GeoVanet scheme,
which uses a DHT-based model that identifies a fixed geographical
location where a mailbox is dedicated to the query to allow the
user to retrieve his/her results in a bounded time. Paczek et al. [22]
introduced a method of selective data collection for traffic control
applications. The underlying idea is to detect the necessity of data
transfers on the basis of uncertainty determination of the traffic
control decisions, and sensor data are transmitted from vehicles
to the control node only at selected time moments. The above-
mentioned schemes have the drawback, since they only consider
the resource of in-network vehicular nodes, which are dynamic
in nature and usually incur relatively large query delays. Queries
are first diffused to nodes that have the query answer, then the
data readings that contain the query results are routed to a fixed
geographical location. Finally, the query requester issues another
request to fetch the data from that location, so it takes longer time
delay for a requester to get the query results.

Recently, there is also a research trend to integrate the cloud
and vehicular networks. Eltoweissy et al. [23] for the first time
coined the term of Autonomous Vehicular Clouds (AVC), where a
group of large number of autonomous vehicles whose corporate
computing, sensing, communication, and physical resources can
be coordinated and dynamically allocated to authorized users. The
concept of VANET Cloud, however, is highly related to “Fog/Edge
computing” [8,24,25], which extends traditional cloud computing
paradigm to the edge of networks. Bonomi et al. [26] defined the
characteristics of fog computing and its role in the framework of In-
ternet of Things. They emphasized the fact that the fog/edge brings
new elements to the realm of Internet of Things through reduction
of service latency and improvement of QoS (Quality of Service).
Recently, Kai et al. [27] delivered a survey on some opportunities
and challenges related to the context of fog computing in VANETSs.

Our early results [9] have demonstrated that the cloud and 4G
channel could be integrated with VANETS, that takes full advan-
tage of resource at the cloud and the edge nodes/RSUs for query
processing at VANETSs. Data are cooperatively stored and indexed,
and queries are processed and forwarded along different paths
according to the cost and time constraints of queries. Despite the
integration and mutual interaction among the cloud and the edge
nodes (RSUs), queries in VANETS could be processed effectively and
efficiently.

3. Preliminaries

Fig. 1 presents a three-layered vehicular network that consists
of network layer, fog layer, and the cloud layer. We assume that
each vehicle v; monitors the surrounding environment through
periodical sensing. These data readings are then sent to fog nodes
(RSUs) through DSRC communications [28], which are one hop
V2I or multi-hop V2V transmissions. Fog nodes own computing,
storage and communication capabilities, as they are located at the
edge of the network and cooperate with the cloud, adopting a “fog-
cloud” collaborative computing and storage strategy to provide a
unified, efficient, and low-latency services for various applications.
The three-layered vehicular cloud system makes position-relevant
and real-time applications possible.

Queries are submitted by vehicular nodes to retrieve query
results. A query is denoted by query(s, f, t, a), where s is the source

————— 4G

vav/vai

DSRC
Coverage

Fig. 1. Illustration of a three-layered Vehicular Ad-hoc Network.

Cloud ;
(Index, Data Index
Store) <~ [u2RsU
(Data Store)
M GOV
u1:RSU
&7 (Data Store)
s:Node
(a) Steps in data storage phase
(In(g)?ulgata query command u4:RSU
Store) (Data Store)
3
$ u3:RSU 5
S Data St
W (Data Store) u5:RSU
result (Data Store)
s:Node at | _n_](iv_e _t? s:node at /
loc1 loc2

(b) Steps in query processing phase

Fig. 2. Steps of data storage and query processing.

node that generates the query, f is a filter of the query, t is a time
bound that query results should be returned, and a is the informa-
tion attached by the source node to facilitate the query processing.
When a vehicular node submits a query, it keeps moving along
its path to its destination. At this point, we assume the target and
traveling path are known, e.g. through the GPS navigation system,
and hence could be extracted as the input for the scheme. The
cloud and RSUs work cooperatively to process the query and cache
the results on intermediate RSUs, from which the query requester
would fetch the query results along its way to destination before
the query is expired.

4. CASQ Framework
4.1. Overview
CASQ takes advantage of resources at the cloud and edge nodes

to cooperatively store and index data, so that queries could be pro-
cessed efficiently and timely. Fig. 2 shows the overall steps of data

240 Y. Lai, L. Zhang, F. Yang et al. / Future Generation Computer Systems 94 (2019) 237-249

storage and query processing. At the storage phase, ordinary nodes
sense the data and upload part of the data to the RSU through DSRC
communications [28]. When an RSU, e.g. ul receives the data, it
extracts the sketch of data and sends an index update to the cloud.
Within the query processing, data might also be forwarded and
copied to other RSUs, e.g. u2, for storage, yet its index also updated
accordingly at the cloud. At the query processing phase, a query is
submitted by a node, e.g. s, at location loc1, and then forwarded
to the neighboring nodes and RSUs. If the neighboring nodes or
RSUs, e.g. u3, return no query results, the query is then forwarded
to the cloud through the 4G channel. The cloud processes the query
by searching its indexing database, and selectively sends a query
command to a set of RSUs, e.g. u4, where the desired data is stored.
The query is processed at u4 and query results are extracted. The
query results are then forwarded to a set of intermediate RSUs,
e.g. u5, where s moves to another location loc2 and is able to fetch
the query results.

The idea of the proposed scheme is straightforward, yet the
main challenges lie in two aspects: (1) the data should be stored
and indexed so that queries could be directed to the RSUs and
query results be accessed quickly, and (2) query results should
timely be routed back to the query requester, who is moving and
expects to fetch the query results on its way to the destination. The
ordinary nodes, RSUs and the cloud should cooperate with each
other to process the query, where the forwarding mechanism of
queries and results should be well designed.

Detailed descriptions of the scheme are presented in the follow-
ing subsections.

4.2. Data storage and indexing

Large amount of data are generated in the network from various
data sources in VANETs. Data are either sensed by the equipped
sensing devices in vehicles, or forwarded by electronic devices
owned by drivers or passengers, e.g. smart phones, through the
intra-vehicle communication channels.

As a piece of data is generated, it is uploaded to nearby RSUs
through the V2I communications, and the RSU that receives the
data would store the data and maintain an index entry of the data
in the cloud through RSU-to-cloud communications. Each piece of
data is denoted by data(id, sk, segs), where id is the identification,
sk is a sketch describing the data, segs is a list of data segments, in
which might consist of larger size of data. Each segment is denoted
by seg(sid, ssk, scon), which is in similar form as data. Here sid is
id of the segment, ssk is the sketch of the segment, scon is the
detailed data of the segment. Sketches could be viewed as a type
of metadata that are generated and evolved as data are stored and
processed. The properties of metadata include data id, size, tag,
locations, length, etc. Example of sketch of data that described the
attributes and structure of data and data segments follows next:

// ssk(dl): an example of sketch of data di,
// which is a clip of sensed video.
{
id: 4578,
sk: {
source: "nodel24",
time: "16 Dec 2016 09:24:27 GMT"
size: '512 M",
type: 'mp4",
tags: "accident, rain",
locations: '"u24"
}
segs: [{sid:1,
ssk:{

data_id: '"4578",
size: '"64 M",
tags: "accident, rain',
length: '"S minutes",
locations: "u24" },
scon: "/var/4578/001.data"
]
¥

Note that the locations attribute indicates where the data are
stored and could be retrieved. Sketches could be stored in self-
described formats, e.g. JSON or XML, which are fully supported
by the mainstream search engines deployed at the cloud. As the
cloud is abundant of storage and computing resources, it is feasible
to deploy search engines to store and index the sensing data
efficiently. For example, the Elasticsearch engine! is a distributed,
RESTful search and analytics engine capable that provides easy APIs
to store and query the sketches. When RSUs receive segments of
new data, they would send sketches of these segments to the cloud,
so the cloud could track all the data and their copies within the
network.

4.3. Query processing

Different methods are adopted to process a query, depending on
different surrounding environments of vehicular nodes. If a node
currently has no neighbors nor in contact with an RSU, the query
is sent to the cloud directly through the 4G channel. On the other
hand, if a node is within the coverage of an RSU or neighboring
nodes, the query is first sent to the RSU or neighbors for processing
through the V2V or V2I communications. If the query could be fully
answered, the result is immediately returned and the processing is
finished. Yet there are cases when the query is not fully answered:

(1) The RSU has only part of the query results, the query should
be forwarded to the cloud for further processing. Both the
result searching and result forwarding steps are needed to
search the query results and deliver them to the query
requester.

(2) The RSU has the full data of query result, yet the node that
submits the request has moved out of its coverage or there
is not enough time receiving the result through the V2I or
V2V communications. A result forwarding step is needed to
transfer and deliver the query results appropriately.

4.3.1. Search and forward query results

When a query is received by an RSU or the cloud, the receiver
would search its data storage to retrieve the query results. If RSUs
receive the query, they would search their local data storage to ex-
tract the query results. In the case that the cloud receives the query,
the search engine deployed would perform the query searching
on the storage of sketches. The search engine returns data sketches
thatindicate the locations of the desired data storage, and the cloud
then sends query command messages to the dedicated RSUs to
extract the query results.

One main constraint of the query processing is the time con-
straint, which is denoted by t. A query is successfully processed
only when the query result is returned to the requester within t,
otherwise the query is failed”. Therefore, query results are acquired
at an RSU, e.g. us, as the results should be forwarded back to the
query requester (also called source node) on time. Here we first
introduce some notations:

e Symbol s denotes the query requester (source node);

1 https://www.elastic.co/products/elasticsearch.

https://www.elastic.co/products/elasticsearch

Y. Lai, L. Zhang, F. Yang et al. / Future Generation Computer Systems 94 (2019) 237-249 241

e Symbol M = {my, my, ..., my} denotes a set of k RSUs where
the query results are retrieved;

e Symbol D = {dq, ds, .. ., d;} denotes a sequence of | RSUs that
source node s would pass through to fetch the query results;

e Symbol x; ; denotes the amount of data forwarded from m; to
dj;

e Symbol x, j(= Z;‘z] X;j) denotes the total amount of data
received at d;.

We assume there are three basic communication channels in
VANETSs: DSRC (V2V, V2I), Wired (I12I) and 4G. The time needed dif-
fers in different channels and forwarding strategies. In CASQ, query
results could be forwarded along two paths, which are described as
follows:

(1) Path1: Query results are uploaded to the cloud from RSUs
in M, and the cloud forwards them to requester s directly
through 4G. Being the cloud denoted by dy, the amount of
data forwarded from m; to the cloud by x; o, the time needed
for the transmission is:

Xs,0 X0

BWu,4g ' BWd,4g

where 14, denotes the cost of time to establish a connection,
Yx,, denotes the time needed for data processing at the
cloud and RSUs, BW denotes the bandwidth of the channel,
and the subscript u and d denotes the up and down link of the
channel. The max function implies the uploading of query
results to the cloud is in parallel with the downloading to
the source node s.

(2) Path2: Query results are forwarded to RSUs in D through 121
or V2V communications, and data are fetched when s moves
through these RSUs. The time needed could be estimated by
the cost of traveling time for s to visit RSUs in D one by one:

0(X0) = Nag + Vxi0 -+ max((1)

p il) | o disdy i)« V) @

vus’dl j=1 vdjvdj+1
I
1, if Z Xez >0
Vi) = i 3)
0, if Z Xz =0

z=j+1

where dis(a, b) is the distance between a and b, ¥ (j) is a
function denoting whether d; is the last RSU participating
the forwarding, and v, is the average speed of node s
moving from a to b. As mentioned in Section 3, we assume
the speed of vehicles could be estimated through periodic
data exchange between vehicles and RSUs.

Data are transferred through 4G channel in Path1. It is faster yet
suffers higher economic cost. In contrast, data forwarding through
Path2 is cheaper, since it takes advantage of the DSRC channels, de-
spite incurs larger delay due to the “store-carry-forward” strategy
and multi-hop routing protocols.

4.3.2. Solving the query result forwarding problem

At extreme cases, all query results are forwarded along one
path, either Path1 or Path2. At more general cases, the data could
be forwarded through both paths to strike a balance between the
cost and time delay.

As the query is bounded by a time interval to return query
results, we define the query result forwarding (QRF) as a linear
programming problem:

Minimize: (X, o * (Cu4g + Cd,4g) (4)

k 1
+szi‘j*ci’j (5)

i=1 j=I

Ik
+ Z in,j *Cjs) (6)

j=1 i=1

Subject to:

X;j>0, i=0,1,....,k j=0,1,...,1 (7)
k l

(X0 + Y Y %) = |data] 8)
i=1 j=1

X fime(s, dj), j=1,2..,1 9)

BWi;

X.j 2R .

< j=1,2.,1 (10)

BWp, ™ vg;

P(Xe0) <t — A (11)

p<t—A (12)

where ¥; j is the amount of data forwarded from m; to dj, X, o(=
Zf;l X; o) is the total amount of data received at dj, i.e. the cloud.
Symbol ¢, 4¢, Cq,4¢ is the unit cost of the up and down channel of
4G, which are predefined unit cost parameters. Symbol ¢;; is the
unit cost of transmissions from m; to d;, symbol ¢; s is the unit cost
of transmissions from d; to source node s. So, term (4) is the cost
forwarding results through Path1, term (5) is the cost forwarding
results from RSUs in M to intermediate RSUs in D through Path2,
and term (6) is the cost of forwarding the results from RSUs in
D to the query requester s. At this point, k and [are the sizes of
M and D respectively, given that k is calculated at the cloud and
l is estimated by the path that s would visit when moving to its
destination. The objective is to minimize the overall cost of the
query result forwarding. Considering the 4G channel expensive and
might be overloaded by the large amount of vehicular nodes, ¢, 4,
is set much larger than c¢;;, which leads to forwarding some data
through Path2 in the model.

Constraint (8) ensures all the data should be forwarded to the
query source either through the cloud or through DSRC communi-
cations, where |data| is the amount of query results. At constraint
(9) and (10), R is the radius of the coverage area of RSU, BWj,; is the
bandwidth of the RSU-to-RSU (I2]) communication channel, BWj,,
is the bandwidth of the RSU-to-Vehicle (I12V) channel, time(s, d;)
the cost of time from the location of node s to dj, v, is the average
speed within the coverage area of d;. Constraint (9) implies the
data be prepared and received at d; before s arrives the coverage
area of d; to fetch the data; constraint (10) implies there should be
enough time for the node to fetch the data when it passes through
the coverage area of d;. Symbol ¢(x, o) and p are defined at Eqs. (1)
and (2), t is the time bound for the query, A is the time that has
elapsed before forwarding the query results. Constraint (11) and
(12) ensure the forwarding time should be within the time bound
of the query. In this way, query results are forwarded in parallel
through different communication channels.

As described in Algorithm 1, the output of the solver is variables
{xijli = 1.,k j = 0,..1}. These parameters are routed to
the RSUs at M as commands. A command, e.g. C, contains the
destination (C.dest) and channel of the forwarding (C. channel),
and the amount of data to be forwarded x; ;. When an RSU, e.g. m;,
receives a command, it acts accordingly to send x;; of the query
result to d;. Note that the query result forwarding problem could
also be solved within the network if RSUs are with computing
capability and have the solver installed. By borrowing the concept
of “edge computing” [8,24], RSUs are viewed as an edge node that
could find a solution to the query result forwarding problem. Yet
at this research we assume the cloud is assigned to solve the query
forwarding problem due to its abundant computing resource.

242 Y. Lai, L. Zhang, F. Yang et al. / Future Generation Computer Systems 94 (2019) 237-249

4.3.3. Setting of input parameters

BWi,,, BWj; are input parameters of the QRF model that in-
dicate the bandwidth of the communication channels. The band-
width could be set according to DSRC communications. The time
cost time(s, d;) and the speed vg; are other inputs for the QRF
model. It is assumed the current location of query requester and its
traveling path are known, e.g., through the GPS-based navigation
assistance system, RSUs would learn and monitor the speeds and
time costs of road segments.

A road segment, denoted by S(I4, I), is determined by two
intersections Iy, I. Given two sensing readings that are generated
by a vehicle when traveling along a road segment S(I1, I,) at time
slot ts,i.e.d; = (s, t1, I1, dr), dy = (s, tp, I, dr), t1, ty € ts, the cost
of S measured by s is:

mu(s, S, ts) =t, — (13)

The calculation cost is done locally at vehicular nodes, and at
intersection I, the measured value mu(s, S, ts) is uploaded to the
RSU.

Given a set of measured mv values, the time cost and average
speed along road segment S at time slot ts could be estimated as
follows:

len(S)

cost(S, ts) = m

Z muv, speed(S,ts) =

1
|Q(S’ l'S)| mves2(S,ts)

(14)

where §2(S, ts) is the set of received mv values that estimate the
cost of S within time slot ts, |X| is the cardinality of set X, and len(S)
returns the length of road segment S.

The time cost and speed of road segments are also uploaded
to the cloud so the cloud has the data to calculate the input
parameters for the QRF problem. The path from the current lo-
cation of vehicle s to RSU d; could be represented by connecting
intersections of road segments along the path: loc(s) — x; —
... = Xk—1 — loc(d;), where loc returns the location of a node.

We set x; = loc(s), xx = loc(d;), then the cost of time from
current location of s to d; could be estimated by:

time(s, d;) = px — p1 (15)

where p; is the time when x; is visited by s. p; is defined in a
recursive way as follows:

p1=t, pi=pi1+cost((Xi—1, %), pi—1), 1€ [2,Kk] (16)

where t denotes the current time, (x;_1, X;) is a road segment on
the path.

4.4. Update of storage and index entries

Data are generated from vehicular nodes and routed to RSUs,
then stored at RSUs every period of time. Therefore, at some time
point, the RSUs should free some space for new data, and the index
entries at the cloud should be updated next.

As a data segment could not answer any query for a given
period of time, it is advised to be transformed or removed from
the network to free some storage space for the newly generated or
received data. In CASQ, we adopt a priority-based strategy for the
management of data segments and update the indexes accordingly
at the cloud.

Data segments are stored at RSUs and organized into a list. The
list is sorted according to the important weight, which is defined
as a tradeoff between the ‘freshness’ and ‘hotness’ of the content.
Formally speaking, the importance weight of seg is defined as:

T — (now — seg.Is_time)
* o

T
seg.nr

max(1, max,)

seg.imp =

*(1—a) (17)

Algorithm 1: Messages handling at ordinary nodes

1 if generate data at s then
2 | send(data, s.RSU, DSRC);
3 if generate query at s then
4 if s.NB = ¢ and s.RSU = ¢ then
5 | send(query, cloud, 4G);
6 | else send(query,s.RSU | Js.NB, DSRC);
7)
s if receive query then
9 result=search(query, localStorage);
10 if full_answer(result, query)==true then
1 L result_forward(result, query.source);

12 | else send(query, cloud); ;

13 if in contact with d; € D then
14 result = fetch(d;, query);
15 | append_answer(result, query);

where o € [0, 1] is the balance factor, T is a user defined time
duration, now is the current time, seg.ls_time is the latest time
when seg is requested, seg.nr is the number of times that seg is
queried, max, is the maximal nr for all data segments in the storage
list. Here the divisor T and max(1, max,) are used to normalize the
weight of freshness and hotness, so they are of the same magnitude
in range [0, 1]. All these parameters are recorded and updated
locally at edge nodes. When a RSU receives a data read from
vehicular nodes, it has to make new space to store that data. If there
is enough free space, the segment is inserted into the ordered list
according to its importance; otherwise, the segments with lower
importance would be transformed or removed to free some storage
space. More details are referenced and found at [29].

As a data segment is removed at a RSU, the id’s of the RSU, the
data reading, and the segment are wrapped into a remove message
and routed to the cloud. The search engine at the cloud would
remove the segment accordingly upon receiving the message. Ad-
ditionally, once all index entries of data segments that belong to
a piece of data are removed, the index entry of the data is also
removed. In this way, the data stored at RSUs and the index entries
at the cloud are synchronized.

4.5. Algorithm description

Algorithms 1-3 present the messages handling pseudocode of
CASQ scheme in an ordinary node, the RSUs, and the cloud respec-
tively.

In Algorithm 1, when a piece of data is generated, it is uploaded
to the RSU through the DSRC communications (line 1-2). Though,
when a query is generated, if the node currently has no neighbors
or is not in contact with an RSU, the query is sent to the cloud
directly through the 4G channel (line 3-5), and if a node is within
the coverage of an RSU or in contact with neighboring nodes, the
query is first sent to the RSU or neighbors for query processing
through V2V or V2I communications (line 6). If the query could be
fully answered, the result is immediately returned and the query
processing is finished (10-11). Though, when the query is not
fully answered, the query is forwarded to the cloud for further
processing (line 12). Finally, a node is in contact with an RSU in set
D, it fetches the query results from these edge nodes (line 14-15).

In Algorithm 2, when RSU receives data from ordinary nodes,
it checks whether need to free some space (line 2). If there is not
enough space, it would remove some data segments according to
their importance weight and send an update message to the cloud
to synchronize the index entries (line 4-5). Next, it stores the data

Y. Lai, L. Zhang, F. Yang et al. / Future Generation Computer Systems 94 (2019) 237-249 243

Algorithm 2: Messages handling at edge nodes.

1 if receive data from node then
2 d = check_remove(data);

3 if d! = null then

4 remove(d, localStorage);
5 L send(remove(d), cloud);

6 store(data, localStorage);
7 | send(data.sk, cloud);

-]

if receive query from node then

9 result=search(query, localStorage);
10 if full_answer(result, query)==true then
1 L result_forward(result, query.source);

12 | else send(query, cloud); ;

13 if RSU m; receives command from cloud then
14 for (x;;, d;) in command do

15 segs = get_data(x; j, localStorage);

16 send(segs, d;);

Algorithm 3: Messages handling at the cloud.

1 if receive index from RSU then
2 L update(index, indexStorage);

3 if receive remove(d) from RSU then
a | remove(d, indexStorage);

5 if receive query from node then

6 problem = search(query, indexStorage);

7 commendSet CS= LPSolver.solve(problem);
8 for command C in CS do

9 | send(C, C.dest, C.channel);

(line 6), and upload an index entry of the newly inserted data to the
cloud (line 7). As RSU receives a query, it searches the query result
at its local storage (line 9). If the query could be fully answered,
the result is immediately returned and the query processing is
finished (line 8-11). On the other hand, when the query is not fully
answered, e.g., the RSU has only part of the result, the query should
be forwarded to the cloud for further processing (line 12). When a
RSU, e.g. m;, receives a command, it acts accordingly to send x; ; of
the query result to d; (line 13-16).

In Algorithm 3, as the cloud receives an index entry of data, the
entry is stored and the index is updated (line 2). Though, as the
cloud receives a remove message, the entry that corresponding
to the data segment d is removed from the index storage (line
4). When the cloud receives a query, it searches the query on the
index storage and defines the problem in line 6, which indicates
where to get the query results. The problem is then defined as a
linear programming problem and solved by the solver (line 7), and
the solved parameters are routed to the RSUs that have the query
results as commands (line 8-9). A command, e.g. C, contains the
destination (C.dest) and channel of the forwarding (C. channel),
and the amount of data to be forwarded, i.e. x; ;.

4.6. Complexity analysis

From Section 4.5 we could see that the message handling al-
gorithms at the ordinary nodes, RSUs, or the cloud are linear in
nature. And the amount of messages linearly relates to the amount
of sensing data or generated queries.

The complexity of the CASQ scheme lies in computing the paths
of query result forwarding. As discussed previously, the query

Table 1
An instance of GPS record at Xiamen Taxi Dataset.
id lon lat time
8250864460 118.024232 24.475228 2014-07-02 15:33:03
Speed Direction Occupied
61 (km/h) 270 (°) “vacant”/“occupied”

result forward problem is transformed into a linear programming
problem, which is well studied and could be solved efficiently
in the worst case [30]. For a linear programming instance of n
variables and m constraints, each iteration takes polynomial time
O(mn). The total number of iterations on problems arising in prac-
tice is usually fast, e.g. the simplex method [31]. Conventional
wisdom suggests that number of iterations in practice is about 3m,
so the complexity for a linear programming instance is O(3m?n).
For the QRF problem presented in this work there are (I+ 1) x k
variables and (kI + 21 + 3) constraints, the total complexity is:

O(3(kl + 21+ 3)% % (I + 1)k) = 0(3k3P) (18)

where k and [are the sizes of M and D respectively. As there are p
queries running on the cloud, the complexity is O(3pk>[®).

5. Experimental results

To verify the performance of the proposed scheme, experi-
ments are conducted on the Opportunistic Network Environment
(ONE) simulator? [32] with real-world road network and trajec-
tory datasets.> We import maps of Xiamen City from the Open-
StreetMap and follows the PathMapBasedMovement to simulate
the movement of nodes. Data reading and queries are injected into
the simulation field as events, where ideal transmission channels
are assumed. In this section, we present the data pre-processing,
the environmental setup and the detailed experimental analysis.

5.1. Data pre-processing

The Xiamen Taxi Dataset is used for the simulation, that consists
of one-month trajectory data of about 5,000 taxicabs in Xiamen
city, China during July 2014, where there are about 220 million GPS
position records and 8 million live trips. The trajectory reporting
frequency is 1-2 times per minute, yet for this simulation we ex-
tracted 506 taxis — about 1/10 of the trajectories for performance
evaluation. Table 1 lists the format of GPS data as example, with
id is the identification of the trajectory or the transaction, lon, lat
denotes the longitude and latitude of the position, time denotes the
timestamp when the position is recorded.

Maps available and provided by OpenStreetMap are used to
build a road network that contains totally 52 479 road segments
and 49773 intersections. After building a road network, it is of
vital importance to mapping GPS trajectories into corresponding
roads, which is also called map matching, which purpose is to
integrate the positioning data with the spatial road network data,
to identifying the actual way on which the vehicle is traveling
and further to determine the vehicle location on that path. For
each GPS record, the map matching is processed in three steps: (1)
Identifying possible road segments, (2) Identifying candidate road
segments, and (3) Weighting candidate road segments.

2 http://akeranen.github.io/the-one/.
3 https://1drv.ms/f/s! AvwP9GtIhRdqawzHyhbu-ZbfFdQ.

http://akeranen.github.io/the-one/
https://1drv.ms/f/s!AvvP9GtlhRdqawzHyhbu-ZbfFdQ

244 Y. Lai, L. Zhang, F. Yang et al. / Future Generation Computer Systems 94 (2019) 237-249

GPS Record

i 0.0025°

Fig. 3. The maximum distance appears when the road segment is tangent to the
circle and the tangent point is the midpoint.

5.1.1. Identifying possible road segments

For each GPS record, it is inefficient yet complex to match all
possible road segments to search suitable road segments to the
record. Rather, we only need to identify a few road segments that
cover all possible segments for the GPS record whilst filter others.
GPS location errors can be as large as 100 min a city with dense tall
buildings and viaducts. As a matter of fact, 100 m can be roughly
regarded as 0.001 latitude or longitude. That is, imagine a circle of
radius 0.001 latitude or longitude centered at the GPS record, the
GPS record can only reside on the road segments that intersect or
tangent to the circle. From our investigation, 99.27% road segments
in the road network are less than 0.005 latitude or longitude long,
as described in Fig. 3.

Therefore, we test each road segment on the following criteria:
whether there exists a road segment that meets the condition that
the distance between the endpoint and the GPS record is less than
0.0027 latitude or longitude long. The GPS record would not reside
on a road segment that fails to meet this criteria.

5.1.2. Identifying candidates to road segments

After obtaining all possible road segments of a vehicle’s GPS
record, we need to identify candidates to road segments satisfying
a number of basic conditions.

First, we need to check whether the distance between the road
segment and the GPS record is less than the distance threshold,
which is set to 0.001 latitude or longitude as depicted before.
To calculate the distance between the road segment and the GPS
record, we need to calculate the closest point on the road segment,
and can be achieved by projecting the location of GPS record onto
the road segment. If the projection point lies on the road segment,
the distance between the road segment and the GPS record turns to
be the distance between the projection point and the GPS record.
Otherwise, if the projection point lies outside the segment, we
should calculate the distances from the GPS record to the road
segment’s two terminal points, and choose the shorter one.

Next, we also need to confirm the difference between the head-
ings of the road segments and the driving direction is less than
60°, a heading difference threshold used in Pfoser’s work [33],
in which the direction of road segment can be calculated using
its two terminal points (first and second points). There are two
directions on one road segment, and the smallest value as the
difference between road segment and vehicle heading is selected.
If the difference is less than the threshold, the road segment will
be identified as a candidate road segment; otherwise, the road
segment is not considered as a candidate road segment even if the
GPS record-Road segment distance is short.

Table 2
Default parameters of the simulations.
Parameter Default value Description
n_RSU 60 Number of RSUs
n_v 506 Number of vehicular nodes
Yoo (1, =5] Time of data processing at cloud or RSUs
N4g 0.5s Waiting time to establish 4G connection
n_time 16 h Total simulation duration
d_sense 60s Time interval of data sensing
q_rate 0.1/m Query rate of nodes
bound N(600, 40) s Time bound of query
BW,, 20/5 Mbps Download/upload bandwidth of 4G channel
BW, 500/250 Kbps Download/upload bandwidth of V2V and V2I
Cu,ags Cij 1072,107#$/MB Cost of the 4G and V2V channel
store 2G Storage space in RSUs
o 0.5 € [0, 1], the balance factor in Eq. (17)

5.1.3. Weighting candidate segments

Once identified a set of candidate road segments for each GPS
record, each road segment is given a weight based on the following
two factors: (1) proximity between the locations of GPS record
and the road segment, (2) similarity between the vehicle heading
and the direction of road segment. Given one GPS record g and
its k candidate road segments S = sy, sy, ..., Sk, the score of one
candidate road segment s; can be computed as:

dis (g, si) o (g, s)

score(g, si) = 64 0.001 + 0, 60° (19)
where 6, and 6, are the weights of location proximity and direction
similarity respectively. dis () is the function of the distance be-
tween one GPS record and one road segment, and « () is the angle
difference function between them. After the score is calculated
for each candidate road segment from the GPS record, the road
segment that has the minimal score is considered as the matched
road of the GPS record on the map.

After the map matching, a speed network of roads is generated
according to the trajectories described in Section 4.3.3, where the
speed of the vehicles ranges from 5 to 80 km/h and differs accord-
ing to road segments and time periods. Fig. 4 depicts the snapshots
of speed network of Xiamen City, China, limited to a rectangle area
of [118.0660E, 118.0990E] x [24.4300N, 24.5300N].

5.2. Experimental environment setup

There are 120 RSUs evenly deployed along the roads. The com-
munication range of 121 or 12V used by the vehicles to exchange
data is set to 60 m, yet the 4G channel does not have the limit of
communication range. As defined in Eq. (1), the time needed for the
data processing at the cloud or RSUs, i.e. yx, ,. is set around 1-5 s,
and the waiting time to establish the connection 74 is set 0.5 s.

The total simulation time is set to 16 h within a day, from 7:00
to 23:00, and every node senses a data reading every 60 s. Data
samples consist of pictures, which are selected in random from
the Google Open Images dataset [34], ~9 million URLs to images
that have been annotated with image-level labels and bounding
boxes spanning thousands of classes. To simulate different sizes of
sensing data, 1 to 5 images from the dataset are bundled together
as one sample of the sensing. A query is defined as picture retrieval
that have been generated through the sensing process given a label
or tag. The time bound for the query follows a normal distribution:
t~N(600 s, 40), and every node generates a query at an average
rate of 0.1 query/minute. The Elasticsearch platform® is used as the
storage and search engine at the cloud, and GLPK for Java® is used
as a solver for the QRF problem.

4 https://www.elastic.co/products/elasticsearch/.
5 http://glpk-java.sourceforge.net/.

https://www.elastic.co/products/elasticsearch/
http://glpk-java.sourceforge.net/

Y. Lai, L. Zhang, F. Yang et al. / Future Generation Computer Systems 94 (2019) 237-249 245

0-10 km/h 10-30 km/h 30-50 km/h >50 km/h
— I
(@) 6am (b) 12 am (c) 6 pm

Fig. 4. Snapshots of speed network of Xiamen City, China, limited to an area of [118.0660E, 118.0990E] x [24.4300N, 24.5300N].

We use the ratio of successful queries and the total cost of query
processing as the main metrics for the performance analysis. A
query is successfully processed only when its results are returned
to the requester before the bounded time. The bandwidth of the
4G channel is set 20 Mbps/5 Mbps for the down/up links, the
bandwidth of the V2V or V2I channel is 500 Kbps/250 Kbps for the
down/up links, and the bandwidth of the I2I channel is 124 Mbps.
The cost of the channel ¢, 4, is set 1072 $/MB and ¢;; is set 10~*
$/MB. The default parameters of the simulation are summarized
in Table 2.

It is worth to note that ideal links are assumed below the appli-
cation layer. That is, as two nodes meet and establish a connection,
the query request, query result and metadata can be wrapped into
one message respectively. Issues from other layers are not consid-
ered, for instance, MAC and channel competition. Indeed, vehicular
network is a broad research area, so Cross-layer optimization is
needed to have better efficiency, yet it is out of the scope of this

paper.
5.3. Compared schemes

Besides CASQ, four other schemes are also implemented for the
comparison purposes:

e (1) Centralized: all sensed data are uploaded to a centralized
cloud server through 4G, and queries are processed on the
cloud;

e (2)Flooding: each vehicle receiving the query from one of its
neighbors relays it, and the query results are flooded back to
the query requester;

e (3) FleaNet [16]: query requester periodically advertises the
query only to its one-hop neighbors, seeking if they can
provide any answer from data stored on their local storage;

e (4) GeoVanet [17]: it uses a DHT-based model that identifies
a fixed geographical location (RSU) where a mailbox is ded-
icated to the query, permitting the user to retrieve his/her
results within a bounded time.

Table 3
Comparison of performance of the algorithms.
Query ratio (%) Query delay (s) Cost ($)

Centralized 100.00 2.85 2223.49
Flooding 34.25 549.23 55.18
FleaNet 9.01 591.34 12.13
GeoVanet 53.79 604.11 29.15
CASQ 94.26 594.57 286.51

5.4. Experimental analysis

5.4.1. Overall performance

Based on the trajectory dataset, about 4.85 s 10° samples are
sensed and 4.8 x 10* queries are generated. Table 3 shows the
performance of schemes aforementioned. The Centralized scheme
uploads all the data through the 4G channel, and stores them at
the cloud. So it has all the queries successfully processed, with a
query radio of 100% and a relatively small query delay (2.85 s).
Yet it also incurs the largest workload for the telephony network,
whose unit cost is expensive (1072 $/MB). The total cost is about
2223.49 dollars for the data upload and query result downloaded.
In contrast, the Flooding, FleaNet and GeoVanet only depend on
the in-network DSRC communications for the query processing.
The total cost is less than 60 dollars, given the small unit cost
of V2V or 12V communications (10~* $/MB). However, the query
ratio is much lower. It is less than 55% for all three schemes. The
query radio of FleaNet is about 9.01% while the Flooding is about
34.25%. This is due to, the query in FleaNet is only forwarded to
one-hop neighbors, while in Flooding scheme queries and results
are flooded, where more nodes could receive the query and hence
have more probability to answer the query and return the results.
In GeoVanet, queries are forwarded to fixed RSUs for storage,
so the query results could be fetched by the query requester.
Nevertheless, this scheme has relatively higher query radio, about
53.79% of the queries are successfully processed, and the cost is
as low as about 29.15 dollars. Besides the Centralized scheme, the
query delay is close to the time bound of the queries, of about
600 s. Note that the expired queries are not accounted for the delay
calculation.

246 Y. Lai, L. Zhang, F. Yang et al. / Future Generation Computer Systems 94 (2019) 237-249

600

5 4G DSRC
E—?, 538.87
S
© 500 A
[a)]
kel
9 400
€
2 304.02
S 3004 284.67 :
—
-
Y= 217.13
© 2004
kel
3]
= 118.46
> 100 A
(@)
g 24.94
0 '0.00 0.00I 0.00I 0.00I |
Centralzied Flooding FleaNet GeoVanet CASQ

Fig. 5. Amounted of transmitted data through the 4G and DSRC channels.

50

N
«
L

IS
o
L

—e— Query assisted by 4G in CASQ

w
[
L

w
o
L

Query assisted by 4G (%)

v
L

o

1I0 1I1 1I2 1I3 1I4 1‘5 1I6 1I7 1I8 1I9 2‘0 2I1 2I2 2I3
Time of the simulation (hours)

7 8 9
Fig. 6. Accumulated percentage of queries assisted by 4G.

Fig. 5 shows the amount of transmitted data through the 4G
and DSRC channels. In the Centralized scheme about 217 G sensed
data are routed to the cloud through the 4G network, while in
Flooding, FleaNet, GeoVanet scheme, the amount of data transmit-
ted through the DSRC channel are 538.87, 118.46, and 284.67 G
respectively. These schemes depend solely on the DSRC transmis-
sions, so there are no 4G transmissions. CASQ adopts a hybrid ap-
proach for the query processing, where the amount of transmitted
data through 4G and DSRC are 24.94 and 304.02 respectively. The
4G channel is adopted to forward results of the query requester,
making large number of queries be processed on time. As shown
in Fig. 6, about 31.2% of the queries in CASQ are assisted by the
4G channel, and at least part of the query results are forwarded
through the Path2 to the query requester. Thus, the proposed CASQ
scheme has a query radio as high as 94.26%, also due to the cloud
playing a vital role on the indexing of data, and supports to forward
the queries to RSUs that have the query answers, speeding up the
query processing and avoids query expiration. Without the assis-
tance of the cloud and the 4G channel, these queries would other-
wise break the bounded time and be dropped. On the other hand,
this increases the cost of the query processing. It costs about 286.51
dollars, about 5 times more than that of the Flooding scheme,
yet still much cheaper than that of the Centralized scheme. The
economic cost of CASQ is about 12.8% of the Centralized scheme.

In our experiments, the movement of vehicular nodes follows
the historical trajectories in real-world datasets, rather than syn-
thesized datasets. Thus, we do not change the environment setting
such as network size or speeds to study such impacts.

1004 #—% % % %
+—t : ' .
90 '
80
—
X
S 704 0~ Centralzied == FleaNet —— CASQ
o Flooding =@~ GeoVanet
= 01 @ -
T — 00— —0
o 50
Py
O 401
S
O 304
20 4
107 & e e e —
0
0.05 0.10 0.15 0.20

Rate of Query (per minute)

Fig. 7. Impact of query rate to the query ratio.

2500 A
2250 A
2000 A
~— 1750
ﬂ ~#- Centralzied —#— FleaNet —— CASQ
"J.)‘ 1500 Flooding —@- GeoVanet
@]
© 1250 A
P
—
@ 1000
>
o 750
500
. . —t
250 4___*___/"' }
[==——— = =i —08
0.05 0.10 0.15 0.20
Query Rate

Fig. 8. Impact of query rate to the cost of query.

5.4.2. Flexibility of queries

Pull-based model provides more flexibility in terms of queries.
Queries could be forwarded to various areas through multi-hop
transmissions, and the types of queries, the filters, the query rates,
and the bounded time of query could be varied according to users’s
requirements. At this subsection, we study the impact of query
parameters.

Figs. 7 and 8 show the impact of query rate to the successful
query ratio and query cost, where larger query rate generates
larger number of queries. The main part of the Centralized scheme
is to upload the sensed data to the cloud, where query results are
extracted and routed back to the requester. Thus, as the query
rate grows, the cost of the query increases from 2038 dollars to
2471 dollars. This is due to larger amount of query results should
be downloaded to the requesters. In the Flooding, FleeNet and
GeoVanet schemes, the sensed data are stored within the network.
The query ratios increase a little bit with the query rate, as well the
costs increase about 20-30 percent accordingly, given that more
queries are to be forwarded to the encountered nodes, noting that
the impact of query rate is relatively small on these schemes. For
the CASQ scheme, the ratio of successful queries are barely not
affected with the increase on the number of queries, yet the cost
increases from 156.3 dollars to 379.1 dollars as the query rate
grows from 0.05 to 0.20. This is due to larger amount of query
results should be forwarded to the requester. Additionally, due to
limited bandwidth of the 12V channel, more data have to be routed
through the 4G channel to the requester, which leads to an increase
for the overall cost.

Y. Lai, L. Zhang, F. Yang et al. / Future Generation Computer Systems 94 (2019) 237-249

1007 % % % % %

901

801 —9¢- Centralzied
Flooding

—#— FleaNet
—@- GeoVanet

—— CASQ

70 A

60 1

501

401

Query Ratio (%)

301

201
10

2(I)0 460 660 S(I)O lOIOO 12‘00 14‘00
Time Bound of Query (seconds)

1600 1800

Fig. 9. Impact of bounded time to the query ratio.

22501 % % % % %]
2000 +
1750 A
—
ﬁ 1500 ~#- Centralzied —#— FleaNet —— CASQ
"J‘.) Flooding —@- GeoVanet
O 1250
@)
E’ 1000
()
>
O 750
500
250
o

200 400 600 800 1000 1200 1400
Time Bound of Query (seconds)

1600 1800

Fig. 10. Impact of bounded time to the cost of query.

Figs. 9 and 10 show the impact of the bounded time of query
to the successful query ratio and query cost. Such ratios increase
with the time bound as more time is given for the query processing.
When the time bound is small, e.g. 200 s, the ratios are less than
30% for all the in-network query processing algorithms. This is
due to the query and results are routed through a ‘carry-store-
forwarded’ style, and delays are common for pieces of data to be
routed to the destination. Thus, lost of queries are expired and
dropped because there are not enough time. When the bounded
time grows, the ratio increases. This is especially true for the
GeoVanet scheme that has the problem of routing back the query
results through multi-hop communications. Data are stored at a
hashed location, the queries are forwarded to that location to ex-
tract the results, which are finally fetched by the requester through
another request. The ratio of the GeoVanet scheme grows from 28%
to 86% when the bounded time increases from 200 s to 1800 s.

For the CASQ scheme, the ratio grows tiny with the bounded
time, yet the cost decreases from 1204.6 dollars to 102.5 dollars
as the bounded time increases from 200 s to 1800 s. The scheme
would select the Path1 strategy through 4G channel to route back
the query result when the bounded time is small, which leads to
an increase of the overall cost. In contrast, if there is enough time
for data to be forwarded to the requester, the cheaper channel of
DSRC is chosen to transmit the data. Generally speaking, the query
schemes benefit from the increased bounded time, but CASQ could
be adaptively tuned to achieve a high ratio of successful queries
when increasing the budget of query processing.

247
100
94.26 94.27 94. 32
86. 35
83.56
80
~
==
N7
o 604
+
@©
[a 4
> 4
C 40
[
S
o
20 4
0 T T T T T
0.5 1 2 3 4
Storage Size at RSUs (GB)
Fig. 11. Impact of storage size in RSUs.
100 300
/—_“/“\’—_'——F"\&—t | 250
90
= I 200 g
o 801 +
— [
+ o
] 150 O
o
>
> 70 : °
g ~#%- Query Ratio (%) 100 8
S
Query Cost ($)
60 A
I 50
50— : . . : —Lo

0.0 0.2 0.8 1.0

0.4 0.6
balance factor a

Fig. 12. Impact of balance factor «.

5.4.3. Impact of storage size at RSUs

As discussed in Section 4.4, RSUs cache the sensed data that
might be queried by the users. Therefore, the storage size of RSUs
has also impact on the proposed scheme.

Fig. 11 depicts the impact of the storage size at RSUs. From
the figure, we could note that the query ratio grows with the
storage size. It is clear that the larger storage space, the more
data segments could be cached and successfully queried. The ratio
of success increases from 83.56% to 94.26% when the storage size
increases from 0.5 to 2 GB. Nevertheless, such ratio does not
increases when the storage size turns larger, i.e., to 3 or 4 GB. This
is because part of the failed queries are due to the movement of
vehicles, which would expire the queries if results are not able to
be forwarded back to the query requester. For this part of failed
queries, merely increasing the cached storage size at RSUs would
not help.

Fig. 12 depicts the impact of « defined at Eq. (17), which is a
balance parameter. From this figure, we could see that the query
ratio increases with «, as it grows to the maximal at about 94.86%
when « is 0.4 then decreases to 91.79% when « is updated to 1.0.
This reflects the tradeoff between the ‘freshness’ and ‘hotness’ of
the sensed data. When « is small, ‘hotness’ dominates the weight
and data that are queried more often would be reserved, while the
newly sensed data would be deleted when there is not enough
storage space. When « is large, the opposite case occurs. In this
dataset and simulation scenario, CASQ achieves the best perfor-
mance when « is around 0.4. The balance factor has relatively small

248 Y. Lai, L. Zhang, F. Yang et al. / Future Generation Computer Systems 94 (2019) 237-249

impact on the query cost, which stays stable at around 286~288
dollars when « varies.

6. Conclusions and future works

In this paper, we have proposed an adaptive and cloud-assisted
data storage and query processing scheme in VANETSs. Data read-
ings are stored at local nodes or RSUs, and indexed by the cloud.
Queries are then processed at the cloud and directed to RSUs to
extract the query results. The cloud calculates a result forwarding
plan by solving the QRF problem, where the query results choose
their best paths either through the 4G or the DSRC communication
channels. Finally, query results are diffused to RSUs along the
traveling path of the query requester, so it can fetch the results just
before the query is outdated. Experimental results demonstrate
the effectiveness of the proposed algorithm in vehicular sensor
networks. Up to 94% of the queries could be successfully processed
in the proposed scheme, much higher than existing query schemes,
while at the same time incurring a relatively low querying cost.

As future work, we will investigate more types of queries within
the framework of CASQ. For example, the time or location based
filter would be considered in the queries, and more efficient and
compressed indexes at the cloud would be explored. In addition,
we are going to study the impact of traffic patterns to optimize the
query processing procedures in VANETS.

References

[1] U. Lee, E. Magistretti, M. Gerla, P. Bellavista, A. Corradi, Dissemination and
harvesting of urban data using vehicular sensing platforms, IEEE Trans. Veh.
Technol. 58 (2) (2009) 882-901, http://dx.doi.org/10.1109/TVT.2008.928899.

[2] Y.Lai, F.Yang, L. Zhang, Z. Lin, Distributed public vehicle system based on fog
nodes and vehicular sensing, IEEE Access 6 (2018) 22011-22024.

[3] J. Zhao, G. Cao, Vadd: Vehicle-assisted data delivery in vehicular ad hoc
networks, IEEE Trans. Veh. Technol. 57 (3) (2008) 1910-1922.

[4] Y. Lai, F. Yang,]. Su, Q. Zhou, T. Wang, L. Zhang, Y. Xu, Fog-based two-phase
event monitoring and data gathering in vehicular sensor networks, Sensors
18(1)(2017) 82.

[5] T.Wang,Y.Li, G. Wang,]. Cao, M.Z.A. Bhuiyan, W. Jia, Sustainable and efficient
data collection from wsns to cloud, IEEE Trans. Sustain. Comput. (2017).

[6] T.Wang,]. Zeng, Y. Cai, H. Tian, Y. Chen, B. Wang, et al., Data collection from

wsns to the cloud based on mobile fog elements, Future Gener. Comput. Syst.

(2017).

S. Al-Sultan, M.M. Al-Doori, A.H. Al-Bayatti, H. Zedan, A comprehensive survey

on vehicular Ad Hoc network, J. Netw. Comput. Appl. 37 (2014) 380-392.

[8] A. Dua, N. Kumar, S. Bawa, A Systematic Review on Routing Protocols for

Vehicular Ad hoc Networks, Vol. 1, Elsevier, 2014, pp. 33-52.

Y. Lai, L. Zheng, T. Wang, F. Yang, Q. Zhou, Cloud-assisted data storage and

query processing at vehicular ad-hoc sensor networks, in: The Third Interna-

tional Symposium on Sensor-Cloud Systems, Springer, 2017, pp. 692-702.

[10] D.J. Abadi, S. Madden, W. Lindner, Reed: Robust, efficient filtering and event
detection in sensor networks, in: Proceedings of the 31st international con-
ference on Very large data bases, VLDB Endowment, 2005, pp. 769-780.

[11] A.Silberstein, Push and pull in sensor network query processing, in: Southeast
Workshop on Data and Information Management (SWDIMO6), Raleigh, North
Carolina, 2006.

[12] Y.Xu,S.Helal, M. Scmalz, Optimizing push/pull envelopes for energy-efficient
cloud-sensor systems, in: Proceedings of the 14th ACM International Confer-
ence on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
ACM, 2011, pp. 17-26.

[13] U. Lee, B. Zhou, M. Gerla, E. Magistretti, P. Bellavista, A. Corradi, Mobeyes:
smart mobs for urban monitoring with a vehicular sensor network, IEEE
Wirel. Commun. 13 (5) (2006) 52-57.

[14] C.E. Palazzi, F. Pezzoni, P.M. Ruiz, Delay-bounded data gathering in urban
vehicular sensor networks, Pervasive Mob. Comput. 8 (2) (2012) 180-193.

[15] M. Motani, V. Srinivasan, P.S. Nuggehalli, Peoplenet: engineering a wireless
virtual social network, in: Proceedings of the 11th Annual International
Conference on Mobile Computing and Networking, ACM, 2005, pp. 243-257.

[16] U. Lee,]. Lee,].-S. Park, M. Gerla, Fleanet: A virtual market place on vehicular
networks, IEEE Trans. Veh. Technol. 59 (1) (2010) 344-355.

[17] T. Delot, N. Mitton, S. Ilarri, T. Hien, Geovanet: A routing protocol for query
processing in vehicular networks, Mob. Inf. Syst. 7 (4) (2011) 329-359.

[18] Y.Zhang,].Zhao, G.Cao, Roadcast: a popularity aware content sharing scheme
invanets, ACM SIGMOBILE Mobile Comput. Commun. Rev. 13 (4) (2010) 1-14.

(7

[9

[19]

[20]

(21]

[22]

(23]
[24]

(25]

(26]

[27]

(28]

[29]

(30]
(31]

(32]

(33]

(34]

Q. Xu, T. Mak, J. Ko, R. Sengupta, Vehicle-to-vehicle safety messaging in dsrc,
in: Proceedings of the 1st ACM International Workshop on Vehicular ad hoc
Networks, ACM, 2004, pp. 19-28.

Q. Xu, H.T. Shen, Z. Chen, B. Cui, X. Zhou, Y. Dai, Hybrid retrieval mechanisms in
vehicle-based p2p networks, in: International Conference on Computational
Science, Springer, 2009, pp. 303-314.

S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, S. Shenker, Ght: a
geographic hash table for data-centric storage, in: Proceedings of the 1st ACM
International Workshop on Wireless Sensor Networks and Applications, ACM,
2002, pp. 78-87.

B. Paczek, Selective data collection in vehicular networks for traffic control
applications, Transp. Res. C Emerg. Technol. 23 (2012) 14-28, data Manage-
ment in Vehicular Networks.

M. Eltoweissy, S. Olariu, M. Younis, Towards autonomous vehicular clouds, in:
International Conference on Ad Hoc Networks, Springer, 2010, pp. 1-16.

Y.C. Hu, M. Patel, D. Sabella, N. Sprecher, V. Young, Mobile edge computinga
key technology towards 5g, ETSI White Paper 11(11) (2015) 1-16.

J. Zeng, T. Wang, Y. Lai, J. Liang, H. Chen, Data delivery from wsns to cloud
based on a fog structure, in: Fourth IEEE International Conference on Ad-
vanced Cloud and Big Data (3), IEEE, 2016, pp. 959-973.

F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the
internet of things, in: Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, ACM, 2012, pp. 13-16.

K. Kai, W. Cong, L. Tao, Fog computing for vehicular ad-hoc networks:
paradigms, scenarios, and issues, J. China Univ. Posts Telecommun. 23 (2)
(2016) 56-96.

].B. Kenney, Dedicated short-range communications (dsrc) standards in the
united states, Proc. [EEE 99 (7) (2011) 1162-1182.

Y. Lai, Z. Chen, W. Wu, T. Ma, Multiple-resolution content sharing in mobile
opportunistic networks, Wireless Commun. Mobile Comput. 15 (16) (2015)
1991-2003.

K.G. Murty, Linear Programming, John Wiley & Sons, 1983.

S. Reveliotis, An Introduction to Linear Programming and the Simplex Al-
gorithm, School of Industrial and Systems Engineering, Georgia Institute of
Technology, 1997.

A. Kerdnen, J. Ott, T. Karkkdinen, The one simulator for dtn protocol evalua-
tion, in: SIMUTools '09: Proceedings of the 2nd International Conference on
Simulation Tools and Techniques, ICST, New York, NY, USA, 2009.

D. Pfoser, C.S. Jensen, Capturing the uncertainty of moving-object represen-
tations, Vol. 1651, 2002, pp. 111-131.

I. Krasin, T. Duerig, e.a. Alldrin, Openimages: A public dataset for largescale
multi-label and multi-class image classification., Dataset available from https:
//github.com/openimages, 2017.

Yongxuan Lai received the Ph.D. degree in computer
science from Renmin University of China in 2009. He
is currently an associate professor in Software School,
Xiamen University, China. His research interests include
network data management, vehicular ad-hoc networks,
big data management and analysis.

Lu Zhang is a postgraduate student in the Department
of Software Engineering at Xiamen University, China. Her
research interest includes vehicular networks and data
mining using trajectories.

Fan Yang received the Ph.D. degree in control theory and
control engineering from Xiamen University, Xiamen,
China, in 2009. He is currently an associate professor in
the Institute of Pattern Recognition & Intelligent Systems,
Department of Automation at Xiamen University. His cur-
rent research interests include mobile computing, pat-
tern recognition, data mining and bioinformatics. He has
published more than 50 journal articles and conference
papers.

http://dx.doi.org/10.1109/TVT.2008.928899
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb2
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb2
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb2
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb3
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb3
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb3
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb4
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb4
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb4
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb4
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb4
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb5
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb5
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb5
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb6
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb6
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb6
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb6
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb6
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb7
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb7
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb7
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb8
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb8
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb8
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb9
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb9
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb9
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb9
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb9
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb10
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb10
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb10
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb10
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb10
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb11
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb11
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb11
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb11
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb11
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb12
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb12
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb12
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb12
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb12
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb12
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb12
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb13
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb13
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb13
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb13
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb13
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb14
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb14
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb14
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb15
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb15
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb15
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb15
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb15
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb16
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb16
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb16
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb17
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb17
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb17
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb18
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb18
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb18
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb19
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb19
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb19
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb19
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb19
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb20
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb20
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb20
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb20
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb20
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb21
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb21
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb21
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb21
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb21
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb21
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb21
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb22
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb22
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb22
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb22
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb22
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb23
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb23
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb23
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb24
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb24
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb24
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb25
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb25
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb25
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb25
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb25
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb26
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb26
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb26
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb26
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb26
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb27
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb27
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb27
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb27
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb27
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb28
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb28
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb28
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb29
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb29
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb29
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb29
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb29
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb30
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb31
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb31
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb31
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb31
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb31
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb32
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb32
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb32
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb32
http://refhub.elsevier.com/S0167-739X(18)30216-4/sb32
https://github.com/openimages
https://github.com/openimages
https://github.com/openimages

Y. Lai, L. Zhang, F. Yang et al. / Future Generation Computer Systems 94 (2019) 237-249 249

Tian Wang received the B.Sc. and M.Sc. degrees in
computer science from Central South University in 2004
and 2007, respectively, and the Ph.D. degree from the
City University of Hong Kong in 2011. He is currently a
Professor with National Huaqgiao University, China. His
research interests include wireless sensor networks, fog
computing, and mobile computing.

~

Kuan-Ching Li received the Ph.D. and M.S. in Electri-
cal Engineering and Licenciatura in Mathematics from
University of Sao Paulo, Brazil in 2001, 1996 and 1994,
respectively. Professor Li is currently a Professor in the
Department of Computer Science and Information Engi-
neering at Providence University, Taiwan. His research
interests include cluster and grid computing, vehicular
networks, parallel software design, and life sciences com-
puting.

	CASQ: Adaptive and cloud-assisted query processing in vehicular sensor networks
	Introduction
	Related Work
	Preliminaries
	CASQ Framework
	Overview
	Data Storage and Indexing
	Query Processing
	Search and Forward Query Results
	Solving the Query Result Forwarding Problem
	Setting of Input Parameters

	Update of Storage and Index Entries
	Algorithm Description
	Complexity Analysis

	Experimental Results
	Data Pre-processing
	Identifying possible road segments
	Identifying candidates to road segments
	Weighting candidate segments

	Experimental Environment Setup
	Compared Schemes
	Experimental Analysis
	Overall Performance
	Flexibility of Queries
	Impact of storage size at RSUs

	Conclusions and Future Works
	References

