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Abstract. Tree ensembles, such as Random Forest (RF), are popular
methods in machine learning because of their efficiency and superior
performance. However, they always grow big trees and large forests,
which limits their use in many memory constrained applications. In this
paper, we propose Random decision Directed Acyclic Graph (RDAG),
which employs an entropy-based pre-pruning and node merging strat-
egy to reduce the number of nodes in random forest. Empirical results
show that the resulting model, which is a DAG, dramatically reduces the
model size while achieving competitive classification performance when
compared to RF.
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1 Introduction

Tree ensembles, such as Random Forest (RF) [3], are very popular methods
in machine learning in the merits of their computational efficiency and over-
all good performances. However, in order to deal with high-dimensional data,
RFs and other tree ensembles often grow big decision trees and large forests,
which may not only deteriorate the generalization performances but limit their
use in memory-constrained devices, such as mobile phones [2,6]. In this case,
post-pruning methods [4], which need to build and store the whole forest in
memory first, is not applicable. To build a lightweight model, pre-pruning meth-
ods begin to arouse the interest of researchers. For example, Globally Induced
Forests (GIFs) [2] iteratively and greedily deepens multiple trees by optimizing
a global function and pre-pruning the undesirable nodes. However, GIF uses

Supported by the Natural Science Foundation of China (61672441, 61673324), the Nat-
ural Science Foundation of Fujian (2018J01097), the Shenzhen Basic Research Program
(JCYJ20170818141325209).

c⃝ Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11448, pp. 319–323, 2019.
https://doi.org/10.1007/978-3-030-18590-9_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18590-9_37&domain=pdf
https://doi.org/10.1007/978-3-030-18590-9_37


320 X. Liu et al.

extremely randomized trees to generate nodes, and cannot be directly applied
to standard random forests. In this paper, we propose Random decision Directed
Acyclic Graph (RDAG), which has the following properties:

– It can be viewed as a pre-pruning method. Similar to [2], it avoids generating
a whole forest first, therefore, requiring much fewer memories.

– It is fast with a linear time complexity in the number of training instances.
– It results in a DAG with multiple roots while RF results in many redundant
trees.

2 RDAG: A Compression Approach for RF

The motivation of RDAG is that the overfitting risk of the tree increases with
the node splitting. Pre-pruning can reduce the risk by preventing node split-
ting, while node merging can also reduce the risk by reducing the number of
nodes. The implementation of node splitting and merging is guided by an Adap-
tive Information Criterion AdIC. In a standard RF, the trees are fully grown
and independent of each other, while in RDAG the node splitting is guided by
AdIC and node merging is performed across different branches in every iteration.
Hence we obtain a directed acyclic graph rather than an ensemble of trees. The
framework is shown in Algorithm1. Given a training set with D observations,
the algorithm will generate T root nodes with Bagging (Step 2) and then the

Algorithm 1. The Framework of RDAG
Input: {xn, yn}Nn=1: training data

T : tree number
λ: parameter of regularization term
n iter: max depth

Output: F : RDAG model
1: gNodes ← {}: growing nodes
2: Grow T root nodes and distribute sampled training data to them (Bagging)
3: F ← {root1, root2, · · · , rootT }
4: for i iter = 1 to n iter do
5: update gNodes
6: if gNodes is empty then
7: break
8: end if
9: split and merge nodes
10: update F
11: end for
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depth of the graph will be increased by iteration. In every iteration, the node
set gNodes including those nodes which should be modified is updated (Step 5),
and splitting or merging trail is executed on every node in gNodes (Step 9), then
the RDAG model F will be updated (Step 10). Once the node set gNodes is
empty, the iteration will be terminated before the graph achieves the maximum
depth n iter (Step 6–7). The overall time complexity of RDAG framework is
O(N ×p×d), which is the same as that of RF, with N, p, d denoting the number
of instances, features, and nodes in RDAG respectively.

3 Experimental Results

We investigate RDAG on 20 UCI datasets [1], and a summary of these datasets
are listed in Table 1. The baseline method, RF, is performed with version 0.19.1
of Scikit-Learn [5]. The reported results are averaged over 10 times of 10-fold
CV. In each fold, an internal 10-fold CV is run on the training partition for
parameter tuning.

Table 1. Details of datasets used in experiments

Name Case Feature Category Name Case Feature Category

hayes 132 4 3 ccc 30000 23 2

car 1728 6 4 dermatology 366 34 6

wholesale 440 7 2 hearts 268 44 3

pima 768 8 2 lung-cancer 32 56 3

breast-cancer 699 9 2 bankrupt1 7027 64 2

cmc 1473 9 3 urban 675 147 9

yeast 1485 9 10 musk2 6598 166 2

heart 303 13 5 arrhythmia 452 261 13

crx 684 15 2 colon 62 2000 2

hepatitis 155 19 2 leukemia 72 5147 2

For RF, the number of trees is set to 10 (denoted as RF10), 100 (denoted
as RF100) and 1000 (denoted as RF1000) respectively. For node splitting, the
parameter mtry which denoted the number of selected features per splitting is
set to √

p with p denoting the number of features [3]. For RDAG, it takes the
same manner and parameter setting of node splitting as RF. We try T ∈ [1, 100].
Other hyperparameters are tuned by cross-validation.
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Table 2. Comparison of test accuracy (in percentage) and the average number of nodes
of RF and RDAG: the ordering of the accuracy is marked by different gray values for a
clearer comparison. The data is displayed in the format of “average accuracy (standard
deviation)—number of nodes”.

dataset RF10 RF100 RF1000 RDAG
hayes 81.21 (1.06)—511 80.97 (1.47)—5030 80.91 (1.30)—49921 81.15 (1.91)—166
car 97.21 (0.20)—3204 98.36 (0.16)—32496 98.64 (0.14)—322563 98.48 (0.13)—2679

wholesale 91.20 (0.48)—644 91.77 (0.32)—6390 91.57 (0.36)—64082 91.66 (0.55)—258
pima 73.56 (0.56)—2444 75.99 (0.54)—23794 76.76 (0.44)—236792 76.78 (1.09)—3126

breast-cancer 95.85 (0.38)—564 96.77 (0.21)—5651 96.92 (0.13)—56292 96.81 (0.14)—632
cmc 51.37 (1.12)—9839 51.94 (0.55)—98342 52.17 (0.61)—983361 53.41 (0.45)—3611
heart 56.59 (1.66)—1569 57.28 (0.80)—15678 57.18 (0.61)—156644 57.89 (1.22)—152
crx 86.39 (0.59)—1812 88.08 (0.38)—17884 88.16 (0.37)—178410 87.80 (0.67)—2307

hepatitis 84.82 (2.40)—373 84.58 (1.33)—3748 85.10 (1.51)—37514 85.68 (1.15)—191
ccc 80.55 (0.78)—78219 81.56 (0.50)—782345 81.63 (0.51)—7821372 81.78 (0.80)—158

dermatology 96.80 (0.68)—624 97.26 (0.34)—6244 97.51 (0.19)—62455 97.40 (0.53)—276
hearts 79.68 (1.36)—504 81.16 (1.18)—5015 81.30 (0.68)—50473 81.68 (1.59)—601

lung-cancer 43.50 (6.79)—184 46.67 (3.78)—1850 44.67 (4.09)—18632 47.67 (4.16)—114
bankrupt1 96.98 (0.61)—3431 97.64 (0.37)—32947 97.67 (0.40)—332848 97.74 (0.35)—1462

urban 82.99 (1.02)—1399 86.05 (0.40)—13902 86.19 (0.31)—138402 85.05 (0.67)—1407
musk2 97.47 (0.49)—3238 97.91 (0.49)—32488 98.00 (0.43)—325225 98.12 (0.47)—4521

arrhythmia 69.60 (1.32)—1584 73.90 (0.94)—15855 74.01 (0.50)—158601 74.16 (1.02)—1772
colon 75.24 (4.05)—109 82.00 (2.89)—1071 81.79 (2.22)—10722 80.88 (2.75)—136

leukemia 91.80 (1.69)—77 96.21 (1.42)—777 97.62 (0.92)—7785 95.84 (0.86)—144

The test accuracy and model size are shown in Table 2. As the number of
trees in RF increases, the overall performances are getting better, while the node
size also increases dramatically. RDAG achieves similar accuracy with RF1000,
while it has much fewer nodes. Even compared to RF10, the number of nodes in
RDAG is always smaller. Figure 1 shows a comparison on node distribution on
hearts. It shows the node distribution at different depths so that we can see the
effect of compression. The nodes of RF increase exponentially with the depth
unless the instances are all allocated to leaf nodes, and a large number of leaf
nodes are generated at a relatively shallow depth, while the sample sizes of these
nodes are very sparse. In contrast, RDAG limits the growing width of the model
and necessarily seeks compensation in depth to obtain sufficient learning ability.

DA
DA

Fig. 1. Comparison on node distribution of RF10 and RDAG on hearts.
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4 Conclusions

In this paper, we propose an entropy-based compression approach for random
forests which generates a lightweight classification model. Experimental results
show that the resulted RDAG model is compact and accurate.
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