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ABSTRACT Recent years there has been increasing concern about the rider demand responsive systems
and the vehicular ad hoc networks. On one hand, centralised taxi platforms such as Uber and Didi Taxi are
popular and changing our daily life; on the other hand, vehicles are equipped with more and more sensors
and are capable to calculate, store, and communicate with other vehicles or road side units, forming vehicle-
to-vehicle or vehicle-to-infrastructure communications. However, little effort has been devoted to integrating
these two fields. In this paper, we propose a distributed public vehicle (PV) system that integrates the rider
demand responsive system and ad hoc vehicular technologies, where the concept of fog computing and
vehicular sensing are adopted for the system design. The challenges lie in that the PV scheduling problem
itself is NP-hard, and careful design of scheduling and cooperation schemes among nodes are needed as
they are ubiquitously connected at the edge of networks. The proposed PV system adopts a heuristic request
insertion algorithm and a cooperative strategy among vehicle nodes, fog nodes, and the cloud to dispatch
requests and to schedule routes for PVs. Experimental studies on real-world data sets demonstrate that the
proposed scheme achieves higher service ratio of requests and better efficiency than other transit methods.
Furthermore, the distributed vehicular sensing is demonstrated to be capable of collecting feasible metadata
for scheduling applications. To the best of our knowledge, this paper is the first report on the integration of
fog nodes and vehicular sensing for the rider request responsive scheduling systems.

INDEX TERMS Fog nodes, public vehicles, route scheduling, vehicle path problem, vehicular sensing.

I. INTRODUCTION
Due to the development of mobile-oriented cloud archi-
tectures and technologies, recent years there has been
increasing concern about the Rider Demand Responsive
Systems (RDRS) [1]–[3]. Platforms such as Uber and Didi
have brought great changes to the daily lives of urban citizens.
Users or riders submit requests to RDRS to demand transit
services; RDRS then makes a match between the incoming
requests and vehicles, and guides the drivers to pick up the
riders. Much research effort has been focused on increasing
the utility and sharing factors of the vehicles, where car-
pooling and ridesharing are becoming hot topics [4]. More
recently, with the progress on driverless/autonomous elec-
tric vehicles, a new type of high occupancy vehicles called
public vehicles (PV) have emerged [5]. Public vehicles,

together with the centralized cloud-based demand-responsive
system, provide ridesharing trips with service guarantee to
supplement or replace buses, private cars, and taxis in urban
areas.

On the other aspect, with the development of vehicu-
lar and communication technologies, there emerges a new
technology called Vehicular Ad Hoc Networks (VANETs)
that integrate the capabilities of new generation wireless
networks to vehicles [6]–[8]. IEEE 802 committee define
wireless communication standard IEEE 802.11p [9], which
serves specifically for vehicle-to-infrastructure (V2I) com-
munication. The Federal Communications Commission has
allocated 75 MHz of bandwidth, which operates on 5.9 GHz
channel for short range communications. Vehicles communi-
cate with other vehicles directly forming vehicle-to-vehicle
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communication (V2V), or communicate with fixed equip-
ment next to the road, referred to as road side unit (RSU),
forming V2I communications. VANETs enable the concept
of Smart Car and Intelligent Transportation Systems (ITS),
in which information, sensing and communication technolo-
gies are applied in the fields of trip services, road transporta-
tion, and traffic management [10].

However, little effort has been devoted to integrating these
two fields. This paper aims to propose a distributed public
vehicle system that integrates the rider demand responsive
system and VANETs technologies. Specially, the concept of
fog computing and vehicular sensing are adopted for the
system design. Fog computing extends the traditional cloud
computing paradigm to the edge of networks [7], [11], [12],
where fog nodes are a new kind of nodes that are capa-
ble of carrying out a substantial amount of storage (rather
than stored primarily in cloud data centers), communica-
tion (rather than routed over the internet backbone), control,
configuration, measurement and management. For example,
Intel’s Next Unit of Computing [13] is a small-form-factor
computer, whose motherboard measures 4 × 4 inches and
could be integrated to the road site units deployed at the
edge of networks. Fog nodes like these are able to gather
and maintain metadata about the road network, requests, and
vehicles. These gatheredmetadata could then be used to guide
the dispatch of requests and be used as input for the matches
between riders and PVs.

There are several advantages of integrating a distributed
public vehicle systemwith fog computing and vehicular sens-
ing. First, data readings or metadata are stored and gathered
at the fog nodes, which are close to the data sources and at
the edge of the network, rather than being uploaded to the
cloud by 4G communications. The V2I communications are
adopted as the main communication channel, which incurs
much lower economic cost and time latency. Second, fog
nodes could perform the calculations locally to makematches
between PVs and riders. This enables the distributed comput-
ing and processing of the public vehicle scheduling problem.
Recently, several applications [10], [12] on VANETs have
emerged to embrace the idea that data are processed using
computing resources located at the edge of the network,
accessible through wireless protocols, and optionally using
remote resources in the cloud.

The challenges of distributed public vehicle system lie in
two aspects. First, the public vehicle scheduling problem is
a member of the general class of the Dial-a-Ride Prob-
lem [3], [14], which is NP-hard. Second, vehicular nodes
are ubiquitously connected at the edge of networks, so there
should be careful design of scheduling and cooperation
schemes among fog nodes, as well as collaboration between
vehicular nodes and the cloud [15], [16]. The proposed
scheme adopts a heuristic request insertion algorithm and
a cooperative strategy among vehicles nodes, fog nodes,
and the cloud to schedule the PVs and serve the requests
from riders. The main contributions of this paper are as
follows:

• We model the demand responsive transit service in a
distributed environment that integrates fog nodes and
vehicular sensing. Fog nodes act as intermediate nodes
to store and gather metadata, which are sensed and
extracted by vehicular nodes. Fog nodes also receive
requests that are dispatched from the cloud, and locally
make assignments among the riders and PVs.

• We propose a Fog-based Public Vehicle System (FPVS).
The system includes components of metadata gathering,
cost estimation, request answering and route scheduling.
A heuristic algorithm based on fog-cloud coordination
is proposed to dispatch requests and to schedule routes
for PVs.

• We conduct experiments on real-world datasets to
verify the effectiveness of the proposed scheme. The
distributed vehicular sensing is capable of collecting
feasible metadata for scheduling applications, and FPVS
achieves higher service ratio of requests and better effi-
ciency than other transit methods. To the best of our
knowledge, this is the first report on the integration of
fog nodes and vehicular sensing for the rider demand
responsive systems.

The rest of the paper is structured as follows: section II
describes the related work; section III introduces some pre-
liminaries and defines the problem; section IV presents the
overview of the FPVS scheme; section V and VI describe
the detailed algorithms of request dispatch, route scheduling,
and metadata maintenance; section VII describes the environ-
mental setup and analyzes the simulation results, and finally
section VIII concludes the paper.

II. RELATED WORK
In this section we review three categories of related works to
position our work in the research community.

A. DEMAND-RESPONSIVE TRANSIT SERVICE
Demand-responsive transit service is an alternative travel
method to personal vehicles, carpool/vanpool and regular
transit service. presented protocols for It is comprised of a
number of customer requests that need to be served door-to-
door or curb-to-curb by a set of vehicles [17], [18].

One important issue in demand-responsive transit service
is to devise a real-time matching algorithm that determines
the best vehicle (taxi, cab, bus) to satisfy incoming service
requests. Ma et al. [1] proposed a taxi searching algorithm
using a spatio-temporal index to quickly retrieve candidate
taxis that are likely to satisfy a user request. The algo-
rithm checks each candidate taxi and inserts the query’s trip
into the schedule of the taxi that satisfies the query with
minimum additional incurred travel distance. Based on [1],
Ma et al. [2] reported a real-time taxi-sharing system based
on the mobile-cloud architecture. Drivers and passengers
exchange service and demands using an application installed
on their smartphones, and the taxi that minimizes the
increased travel distance of the ride request would be
selected to pick up the new passenger. Zhu et al. [5]
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proposed a heuristic precedence constrained origin-
destination insertion algorithm for the public vehicle system
to minimize vehicles’ total travel distance with service guar-
antee such as low detour ratio. Based on [5], the same authors
proposed a path planning strategy that focuses on a limited
potential search area for each vehicle by filtering out requests
that violate passenger service quality level [19], and stud-
ied the joint transportation and charging scheduling for PV
systems to balance the transportation and charging demands,
ensuring the long-term operation [20]. More recently,
Cheng et al. [4] formulated the utility-aware ridesharing
problem on road networks. It assigns time-constrained riders
to capacity-constrained vehicles to maximize the entire utility
value, which includes the vehicle-related utility, the riders-
related utility, and the trajectory-related utility.

The aforementioned schemes assume a centralised server
to execute algorithms for demand-responsive transit service,
and the desired metadata are available as input for the algo-
rithms. Different from those algorithms, the proposed scheme
focuses on distributive processing of the algorithm, where
matching and scheduling algorithms are executed on the fog
nodes, and hence avoids a bottleneck of computing and stor-
age. Moreover, the proposed scheme integrates the metadata
gathering into the whole framework, where data is gathered
and stored at distributed fog nodes in the edge of networks.

Demand-responsive transit service could be abstracted as
a member of the general class of the Dial-a-Ride Prob-
lem [3], [14], which focuses on scenarios of planning sched-
ules for vehicles, subject to the time constraints on pickup and
delivery events. The proposed approach dispatches requests
to distributed fog nodes that maintain lists of vehicles, which
actually partitions a large dial-a-ride problem into multiple
smaller ones that are easier to solve.

B. VEHICULAR SENSING
Cooperative vehicular and urban sensing is at the heart of the
intelligent and green city traffic management. Lee et al. [21]
proposed the MobEyes system for proactive urban monitor-
ing. The system exploits the vehicle mobility to opportunis-
tically diffuse concise summaries of the sensed data, and it
harvests these summaries and builds a low-cost distributed
index of the stored data to support various applications.
Hull et al. [22] proposed a data management system Car-
Tel for querying and collecting data from mobile vehicles,
which enables the application development with data col-
lected. Delot et al. [23] proposed a pull-based data gathering
strategy called GeoVanet, which adopts a DHT-based (DHT,
dynamic hash table) model to identify a fixed geographical
location where a mailbox is dedicated to the query. Users
are able to send queries to a set of cars and find the desired
information in a bounded time. Płaczek [24] introduced a
method of selective data collection for traffic control appli-
cations. The underlying idea is to detect the necessity of
data transfers on the basis of uncertainty determination of the
traffic control decisions, and sensor data are transmitted from
vehicles to the control node only at selected time moments.

Skordylis and Trigoni et al. [25] presented protocols for
traffic-monitoring in vehicular networks. They defined two
operation modes, multi-hop forwarding (MF) mode and
delay-tolerant mode (DM). During MF mode messages are
forwarded through the shortest path to destination, while in
DM mode messages are only forwarded at intersections to
keep them inside the shortest path when the current carrier
moves away.

As the volume of sensed data might be large, there are
also some research on reducing the volume of sensed data
and the cost of gathering them. Li et al. [26] proposed a
cooperative storage solution in vehicular sensor networks
for mobile surveillance. Nodes first capture images from
links/streets and then eliminate redundant data by exchanging
image tags between vehicles, and it also includes a distributed
storage balancingmechanism to offload data from heavy-load
nodes to light-load nodes. Lai et al. [10] proposed an efficient
continuous event-monitoring framework based on fog nodes
in VANETs, where a two-level threshold strategy is adopted
to suppress unnecessary data upload and transmissions. In the
monitoring phase, nodes sense the environment in low cost
sensing mode. When the probability of event is high and
exceeds some threshold, nodes transfer to the event-checking
phase, where some nodes would be selected to transfer to
the deep sensing mode to generate more accurate data of the
environment.

The aforementioned approaches could be used for the pro-
posed scheme to gather the metadata. FPVS takes full advan-
tage of the computing and storage resources of vehicular
nodes and fog nodes to perform calculations locally, which
extracts knowledge from the raw sensed data, so a much
smaller amount of sensed data are transmitted in the network.

C. FOG/EDGE COMPUTING
Fog nodes are able to provide computation, storage, and
networking services between the end nodes and traditional
clouds. Fog reduces service latency, and improves QoS,
resulting in superior user-experience [10], [11]. Within the
concept of fog/edge computing, more and more fog nodes
are deployed at the edge of networks for various applications.
Bonomi et al. [11] defined the characteristics of fog com-
puting and its role in the Internet of Things. They empha-
sized the fact that the fog brings new elements to the realm
of Internet of Things through reduction of service latency
and improvement of QoS. Sharma and Wang [27] proposed
a framework for coordinated processing between edge and
cloud computing/processing by integrating advantages from
both platforms. It exploits the network-wide knowledge and
historical information available at the cloud center to guide
edge computing units towards satisfying various performance
requirements.

Another concept that is highly related to the fog computing
is VANET Cloud, which extends traditional cloud computing
paradigm to VANETs. Eltoweissy et al. [28] for the first time
coined the term of Autonomous Vehicular Clouds (AVC),
where a group of largely autonomous vehicles whose

VOLUME 6, 2018 22013



Y. Lai et al.: Distributed Public Vehicle System Based on Fog Nodes and Vehicular Sensing

corporate computing, sensing, communication, and physical
resources can be coordinated and dynamically allocated to
authorized users. Hao et al. [15] gave a detailed description of
fog computing and proposed a flexible software architecture
to incorporate different design choices and user-specified
polices.

The proposed scheme belongs to the applications of fog
computing in VANETs. Yet to the best of our knowledge, it is
the first report to schedule the demand-responsive PVs within
the fog computing paradigm. The challenge of fog computing
lies in that the nodes are ubiquitously connected at the edge
of network, and there should be careful design of scheduling
and cooperation schemes among the fog nodes, as well as
collaboration between vehicular nodes and the cloud.

III. PRELIMINARIES AND PROBLEM DEFINITION
This section introduces some preliminaries of the paper,
including the vehicular network model, the PVs and requests,
and the pubic vehicle path problem.

FIGURE 1. Illustration of a vehicular network with fog nodes (RSUs).

A. VEHICULAR NETWORK MODEL
Fig. 1 presents a three-layered vehicular network that con-
sists of network layer, fog layer, and the cloud layer. At the
network layer, vehicular nodes collect various sensing data,
including speeds, locations, and etc. These data could be
uploaded through V2I communications, and stored at the fog
nodes. Fog nodes are with computing, storage and communi-
cation capabilities. Although vehicles can also be fog nodes,
we assume only the road side units (RSUs) are adopted as the
fog nodes. RSUs locate at the edge of the network and coop-
erate with the cloud, adopting a ‘‘fog-cloud’’ collaborative
computing and storage strategy to provide a unified, efficient,
and low-latency services for various applications. The three-
layered vehicular cloud systemmakes some position-relevant
and real-time applications possible.

B. PUBLIC VEHICLES AND REQUESTS
Vehicular nodes move on roads. Among them are a set of
PVs that are deployed to fulfil the requests of riders. PVs are

one type of high occupancy vehicles and may be driver-
less or autonomous electric vehicles. They provide rideshar-
ing trips with service guarantee to supplement or replace
buses, private cars, and taxis in urban areas.

Each vehicle, e.g. v, has a current location lv and capac-
ity cv. PVs cruise on the roads/streets. They interact with the
fog nodes and the cloud to fulfil transit requests from riders.
Each request, e.g. r , is associated with a creation timestamp
t0, an origin location o, a destination location d , and a con-
straint pickup time window [t1, t2]. Requests are submitted
to the cloud by riders through their mobile clients. The cloud
would dispatch the requests to fog nodes, where the fog nodes
would do local calculations based on gathered metadata to
determine whether to accept or reject the requests.

C. PUBLIC VEHICLE PATH PROBLEM
Given a set of n requests R and a set of m vehicles V , a match
between R and V could be represented by an n×mmatrixM
at current time t . Each individual item in M is denoted by
Mi,j and is set 0 by default. Suppose v is the ith vehicle, r is the
jth request,Mi,j is set to 1 if v is assigned to pick up request r ,
i.e.Mi,j = 1.Mi,j = 1 corresponds to an assignment: (v, r, t).
A match is feasible if the following conditions are met:

n∑
i=1

Mi,j ≤ 1, j = 1, ..,m (1)

ζ (r) ≤ θ, r ∈ R (2)

γ (r .o) ∈ [r .t1, r .t2], r ∈ R (3)

γ (r .o) < γ (r .d), r ∈ R (4)

nv ≤ cv, v ∈ V (5)

Constraint 1 implies that for a specific request there is at
most one vehicle assigned to it. ζ (r) denotes the detour ratio
of a request, which is further defined by Eq. 9 in section V-A.
Constraint 2 means that the detour ratio for each vehicle is
smaller than a system defined threshold θ . γ (r .o), γ (r .d)
denote the time when the vehicle visits the origin and des-
tination of r along the path. Constraint 3 implies the request
is picked upwithin the constraint timewindow, and constraint
4 implies the request should be picked up before being deliv-
ered to the destination. nv denotes the current number of riders
in vehicle v; cv denotes the capacity of v. Constraint 5 implies
that the number of riders should be within the capacity of the
vehicle.

Having these constraints satisfied, the overall cost of a
matchM between R and V is:

cost(R,V ,M)t =
∑
Mi,j=1

ct(v, r, t) (6)

where ct(v, r, t) is the cost of assigning v to r at time t . Sup-
poseM is the set of possible matches, the public vehicle sys-
tem is to find a feasiblematch thatminimises cost(R,V ,M)t :

M∗
t = argmin

M
{cost(R,V ,M)t :M ∈M} (7)
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The goal is to find a matchM with minimal cost at time t . It
is also called the Public Vehicle Path (PVP) problem, which is
a member of Dial-a-Ride Problem [14] and NP-hard. Several
metrics could be used to define function cost and to measure
the utility of matching between the PVs and riders. From the
view of operator companies, the number of picked up riders,
the total distance travelled by the vehicle, and the overall
revenue-cost ratio are the main concerns; yet from the view
of riders, the waiting time, the total trip time, and the detour
ratio are their main concerns [4]. Some of the measures are
conflicting to others, and it is not possible to satisfy them all.

In real situations, large number of requests are submitted
by riders and received at the scheduling system in realtime.
So the problem has larger complexity with dynamic finite
capacity and with more constraints, e.g. the time. This paper
focuses on the PVP problem under distributed vehicular net-
work environment, which includes the ride matching between
PVs and riders, the path scheduling of vehicles, and the inte-
grating the abundant resources of fog nodeswith the vehicular
nodes.

IV. FOG-BASED PUBLIC VEHICLE SCHEDULING SYSTEM
In this section we present an overview of the FPVS and
describes the metadata gathering through vehicular sensing.

FIGURE 2. Overview of the distributed public vehicle scheduling system.

A. SYSTEM OVERVIEW
Fig. 2 depicts the framework of the proposed Fog-based
Public Vehicle Scheduling system (FPVS).

The first part of procedures are the metadata gathering
and cost estimation. Vehicles on the road sense the envi-
ronment and generate data readings. These readings, which
might be filtered and compressed if necessary, are routed
to fog nodes or cloud for storage. Local calculations could
be done in vehicular nodes, where positions are mapped to

road segments, and the cost of travelling on road segments
are estimated. These estimations are uploaded to fog nodes,
based on which the fogs nodes further integrate and estimate
the travelling cost within their service areas. Fog nodes also
exchange metadata and information with other fog nodes.

The second part of procedures are the request answering
and route scheduling. A request is submitted by a user and
routed to the cloud. It is stored and pre-processed at the cloud,
and would be dispatched to corresponding fog nodes to find
matched vehicles. A fog node would assemble metadata that
include the time cost of road segments within its service
area, the status of the PVs, and data from the cloud and
other fog nodes, to calculate whether to accept or reject the
request. Public vehicle scheduling algorithms are executed
locally on fog nodes. The feedback is routed back to the cloud
and returned to the user or rider. If the request is accepted,
the route scheduling modules on fog nodes and PVs would
cooperate to guide the vehicles, and payments for the trip
would be processed. Note that vehicles, fog nodes, and the
cloud are assumed to have some common data and knowl-
edge, e.g. the road network of the city, and they could do
calculations distributively, with different order of computing
capabilities. Upon a request, a rider can only be served by a
single PV from his/her origin to destination, while the multi-
hop scheme is not in the scope of this paper.

B. METADATA GATHERING AND COST ESTIMATION
As illustrated in Fig. 1, fog nodes are deployed at the edge
of the network, and they receive periodical sensed readings
from the vehicular nodes. A fog node is denoted by f , and
is attached to a location lf and a service area Af . Vehicles
within the service area are able to communicate with their fog
node through direct V2I or multi-hop V2V communications.
Each vehicle is equipped with a GPS device and is able to
generate raw GPS readings. Here we assume vehicular nodes
can do local ‘‘position to road segment’’ mapping. When a
vehicle arrives at an intersection, it would send a data reading
d(id, t, I , dr) to the fog node, where id is the identifica-
tion of the vehicle, t is the timestamp, I is the vehicle’s
current intersection, and dr is the direction that the vehicle
heads to.

A road segment, denoted by S(I1, I2), is determined by
two intersections I1, I2. Given two sensing readings that are
generated by a vehicle when travelling along a road seg-
ment S(I1, I2) at time slot ts, i.e. d1 = (v, t1, I1, dr), d2 =
(v, t2, I2, dr), t1, t2 ∈ ts, the cost of S measured by v is:

mv(v, S, ts) = t2 − t1 (8)

The cost calculation is done locally at vehicular nodes, and
at intersection I2 the measured value mv(v, S, ts) is uploaded
to the fog node. This shifts the GPS mapping and cost
estimations to the vehicular nodes, which avoids fog nodes
becoming bottlenecks when uploading raw GPS records,
especially when there are large number of vehicles on the
roads.
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Given a set of measuredmv values, the time cost along road
segment S at time slot ts could be estimated as follows:

cost(S, ts) =
1

|�(S, ts)|

∑
mv∈�(S,ts)

mv (9)

where �(S, ts) is the set of received mv values that estimate
the cost of S within time slot ts, and |X | is the cardinality of
set X . Metadata about the requests and PVs are also gathered
and maintained at fog nodes and the cloud. For fog node f ,
the list of PVs within its service area is denoted by Vf , and
the list of requests under its supervision is denoted by Rf .

V. REQUEST DISPATCH AND ROUTE SCHEDULING
A request is submitted by a user/rider from a mobile client
to the FPVS. Due to the popularity of mobile phones, we
assume the request is uploaded to the cloud through the 4G
channel, though other channels like DSRC (Dedicated short-
range communications [29]), WIFI could also be used for
the uploading of requests. In this section we first introduce
some terms and definitions related to the scheme, and then
describe the details of request dispatch and route scheduling
procedures.

A. TERMS AND DEFINITIONS
1) CURRENT PATH
Assume the requests currently assigned to vehicle v is denoted
by R = R0 ∪ R1. R0 is the set of requests that have been
picked up, so only the destinations need to be concerned; R1
is the set of requests that have not been picked up, both the
origins and destinations need to be considered. We denote the
set of destinations of R0 as Ud

0 , and the set of origins and
destinations of R1 as Uo

1 and Ud
1 respectively. Given the set

of vertexes U = Ud
0 ∪ U

o
1 ∪ U

d
1 , the current path is denoted

by path:

path = {x0, x1, x2, . . . , xk}, xi ∈ U , k = |U | (10)

where x0 is the current location of v, i.e. lv. For any specific
request r(t0, xi, xj, [t1, t2]) ∈ R1, the pickup time is within the
constraint window:

ct + cost(x0, xi) ∈ [t1, t2], i < j (11)

where ct denotes the current time, cost(x0, xi) is the time cost
travelling from current location x0 to xi along the path. i < j
means the origin is visited before the destination.

As shown in Fig. 3, a PV moves long a path to provide trip
service. a+, a− denote the pickup and dropoff locations of
rider a. The current path consists of two parts. The already
visited path is lv → a+ → b+ → b− → c+, and the path
scheduled to visit is c+→ a−→ d+→ c−→ d−.

2) COST OF PATH
Given a path={x0, x1, x2, . . . , xk}, its cost is defined as the
minimal accumulated time cost from node x0 to xk starting at
time t . The cost of path at t is denoted by cost(path, t):

cost(path, t) = min(τk − τ0) (12)

FIGURE 3. Illustration of the current path for a vehicle. a+, b− denote the
pickup and drop off locations of rider a. The already visited path is
lv → a+ → b+ → b− → c+, and the path scheduled to visit is c+ → a−
→ d+ → c− → d−.

where τi denotes the time point when xi is visited, which is
defined in a recursively way as follows:

τ0 = t, τi = τi−1 + cost(xi−1, xi, τi−1), i ∈ [1, k] (13)

where cost(xi−1, xi, τi−1) is the time cost for a vehicle to
travel from xi−1 to xi starting at time point τi−1. The cost
calculation is time-dependent.

As shown in Fig. 3, the numbers on the edges indicate the
time cost travelling along the edges starting at position lv. The
total cost of the current path is: cost(lv, a+)+cost(a+, b+)+
cost(b+, b−)+cost(b−, c+)+cost(c+, a−)+cost(a−, d+)+
cost(d+, c−) + cost(c−, d−) = 1 + 2 + 3 + 2 + 2 + 1 +
2 + 2 = 15. In this research we assume a time-dependent
road network of speeds is maintained at fog nodes, where
the time cost of road segments could be accessed from a
speed database that is extracted based on predictions using the
historical trajectories and gathered vehicular readings [30].
The time cost is adopted as the main metric, while other
metrics are used as constraints.

3) DETOUR RATIO
If request r(t0, o, d, [t1, t2]) is accepted by a vehicle that
has a scheduled path, the vehicle would travel along
the path to pick up the rider at o within time window
[t1, t2] and then deliver the rider to d . The detour ratio is
defined as:

ζ (r) =
cost(path, r .o, r .d)
cost(r .o, r .d)

(14)

where cost(r .o, r .d) is the minimum cost of travelling from
o to d in the road network, and cost(path, r .o, r .d) is the cost
of travelling from o to d along the scheduled path.
As shown in Fig. 3, the road segments along which rider

a travels is a+ → b+ → b− → c+ → a−, so the cost is
2 + 3 + 2 + 2 = 9. Yet the shortest path of rider a from
its origin to desination is a+ → c+ → a−, whose cost is
4 + 2 = 6. So the detour ratio is 9/6 = 1.5. For rider e,
his/her request is rejected because accepting it violates some
detour constraints of other riders.
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For a set of requests R, the average detour ratio is also
defined as:

ζ (R) =

∑
r∈R ζ (r)
|R|

(15)

4) AVERAGE NUMBER OF ON-BOARD RIDERS
For a scheduled path, the average number of on-board riders
is defined as follows:

ϕ(path) =

∑
x∈path ob(x)

|path|
(16)

where ob(x) is the number of on-board riders on vertex x,
and |path| is the number of vertexes along the path.

5) LOAD OF SERVICE
Having the detour ratio and average number of on-board
riders defined, the load of service of vehicle v is defined
as follows:

ls(v) = α
ϕ(path)
cv

+ (1− α)
ζ (Rf )
θ

(17)

where cv is the capacity of vehicle v, Rf is the set of requests
being served by f , θ is the system constraint of detour ratio
for all taxis, and α ∈ [0, 1] is the balance factor. The load of
service for a fog node f is defined as the average of the top-K
vehicles:

ls(f ) =

∑
v∈CKf

ls(v)

|CK
f |

(18)

where CK
f ⊆ Vf is the set of top-K vehicles ordered by ls in

the service area of f . K is a system defined parameter that
could be tuned by the operator. The ls values of the fog nodes
would be routed to the cloud, so the cloud has knowledge of
the load of service statuses of all the fog nodes.

B. DISPATCH OF REQUESTS
The cloud receives requests from riders and dispatches them
to fog nodes for further processing. Given a request, e.g.
r(t0, o, d, [t1, t2]), the cloud first calculates a set of fog nodes
that are within the neighbourhood of r , denoted by N (r):

N (r) = {f | f ∈ F ∧ dist(o, lf ) < δ} (19)

where F is the set of fog nodes, dist(o, lf ) is the distance
between o and the location of f , and δ is a predefined param-
eter. Set N (r) is then ordered by the ls values in ascending
order, and the top K ′ fog nodes are selected as the targeted
fog nodes, to which the request would be routed. Here K ′ is
a system defined parameter.

C. SELECTION OF PATH OF MINIMAL COST
As mentioned previously, the demand-responsive transit ser-
vice could be abstracted as a special member of the general
class of the Dial-a-Ride Problem that focuses on scenarios
of planning schedules for vehicles, subject to the time con-
straints on pickup and delivery events. Since the problem

is NP-hard [3], [14], here we present a heuristic request
insertion and route scheduling algorithm.

Assuming at a time point there are m PVs in the service
area of a fog node, correspondingly there are m paths of the
vehicles. When a fog node receives a request, it calculates
the inserting cost for all the paths, and selects a vehicle with
the lowest cost.

In the following we assume the request being pro-
cessed at the cloud is r(t0, o, d, [t1, t2]). Given a path
{x0, x1, x2, . . . , xk}, the cost of inserting r is defined as:

insert_cost(path, r, t0)=min{π (path, r, i, j, t0)

| i, j ∈ [0, k], i ≤ j}

π (path, r, i, j, t0)= cost({x0, . . . , xi, o, . . . , xj, d,

. . . , xk}, t0)− cost(path, t0) (20)

where cost(path, t0) is the cost of the path starting at time t0,
π (path, r, i, j, t0) is extra cost of the path after inserting o at xi
and inserting d at xj. The insertion should also satisfy the time
constraint of the request. If the constraints are not satisfied,
the insertion cost π (path, r, i, j, t0) = ∞. A path is said to
be compatible to a request if insert_cost(path, r, t0) 6= ∞,
which means r could be inserted to the pathwithout violating
any constraints. To insert a new request, we could select one
location xi on the path to insert o, then after the location o
select another location to insert d . There are k + 1 possible
insertion positions, so the overall complexity of the insertion
is k2. The insertion algorithm is similar to [5], and we suggest
interested readers to the reference for a detailed description
of the algorithm. Note that the insertion points of a path is
smaller than twice of the capacity of a vehicle, i.e. k < 2cv.

Then the vehicle with the minimal insertion cost is selected
as candidate vehicle (cv) to serve this request, denoted as:

cv=argmin
v
{insert_cost(v.path, r) | v.path ∈ PATH} (21)

where PATH is the set of paths in fog f , and v.path is the
current path of vehicle v. Having the candidate PV calculated,
the insertion cost is defined as:

icost(f , r) = insert_cost(cv.path, r) (22)

D. FINAL DECISION OF A REQUEST
Each fog node in set N (r) would then route a message, e.g.
msg, that contains the value of icost to a mediate node to
make final decisions about the request. The mediate node
could be the cloud, or the fog node that covers the origin
of the request if fog nodes are inter-connected. Message msg
is in the form 〈id, icost(f , r), cv, ls(cv)〉, where id indicates
the fog node, cv is the candidate PV, and ls(cv) is cv’s value
of load of service. When the mediate node receives all the
messages, it compares all the values of insertion cost and
finds the minimal one.

Suppose 〈f ∗, icost∗(f ∗, r), cv∗, ls(cv∗)〉 is the message
with the smallest insertion cost for r , there are two cases of
the value icost∗(f ∗, r):
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1) If icost∗(f ∗, r) = ∞, r is rejected. This means the
insertion violates some constraints. A rejection mes-
sage reject(r) is routed to the cloud, and then sent to
inform the user/rider.

2) If icost∗(f ∗, r) 6= ∞, r is accepted. Public vehicle cv∗

at fog f ∗ is assigned to r , and an assignment message
(r, cv∗, f ∗) is routed to fog f ∗ and the cloud. An accep-
tance message accept(r) is also sent from the cloud to
the rider to notify him/her to wait for the pickup. Fog
node f ∗ would broadcast the assignment message, and
vehicle cv∗ would update its current path to pickup the
rider of r when receiving the message.

If there are multiple fog nodes that have the same insertion
cost icost∗(r, f ∗), the one with the smallest value of load
of service ls(cv∗) will be selected as the final match to the
request. In very rare cases that even the ls(cv∗) values are
equal, FPVS will just select one fog and one PV in random
for the match assignment.

Algorithm 1 Message Handling When Dispatching
Requests and Making Request-Vehicle Matching

1 if receives r at the Cloud then
2 get neighbouring fogs N (r) according to Eq. 19;
3 �← order N (r) by the ls values;
4 �(K ′)← top K’ fog nodes in �;
5 for each f ∈ �(K ′) do
6 send r to fog node f ;

7 if receives r at fog node v then
8 calculate icost(f , r) according to Eq. 20, 21, 22;
9 msg← 〈id, icost(f , r), cv, ls(cv)〉;
10 send msg to the cloud ;

11 if receives msg at the cloud then
12 〈id, icost(f , r), cv, ls(cv)〉 ← msg;
13 add 〈id, icost(f , r), cv, ls(cv)〉 to �′;
14 if |�′| == |�(K ′)| then
15 icost∗(f ∗, r)← smallest insertion cost in �′;
16 if icost∗(f ∗, r) == ∞ then
17 send reject(r) to rider of r ;

18 else
19 send accept(cv∗, r) to rider of r ;
20 send accept(cv∗, r) to f ∗;

21 if receive accept(cv∗, r) at fog node f ∗ then
22 broadcast assign(r, cv∗) at f ∗;

23 if receive assign(r, cv∗) at cv∗ then
24 insert r into the current path of cv∗;
25 reschedule the path to pickup r ;

E. Algorithm Description
Algorithm 1 is the pseudocode of message handling when
dispatching requests and making request-vehicle matching.

When the cloud receives request r , it gets the set of neigh-
bouring fog nodes N (r) according to Eq. 19 (line 2), orders
the set by the value of load of service, and selects the top
K ′ fog nodes, denoted by �(K ′) (lines 3-4). Then the cloud
forwards r to each fog node in �(K ′) (line 5). This request
is then received at fog nodes. The fog node, e.g. f , calculates
the minimal insertion cost icost(f , r) according to Eq. 20, 21,
22 (line 8). A message that wraps icost(f , r), cv, and ls(cv) is
sent back to the cloud (lines 9-10). Here the cloud is used as
the intermediate node. It receives the msg message, extracts
the data segments related to r , and accumulates these data
to a set denoted by �′ (lines 12-13). When all the messages
from nodes in �(K ′) are received, i.e. |�′| equals |�(K ′)|,
the cloud compares all the values of insertion cost and finds
the minimal one, i.e. icost∗(f ∗, r) (line 15). If the minimal
cost is ∞, the request is rejected and a rejection message
is sent to the rider of the request (line 17); otherwise, the
acceptance message accept(cv∗, r) is sent to both the rider
and fog node f ∗ (lines 19-20). The vehicle cv∗ is in the
service area of fog node f ∗, and it is going to be scheduled
to pick up the rider of the request. Finally, when fog node
f ∗ receives the accept(cv∗, r) message, it broadcasts a mes-
sage assign(r, cv∗) within its coverage (line 22). When cv∗

receives the message, it would insert r into the current path
and reschedule its path to pick up the rider of r (lines 24-25).

VI. MAINTENANCE OF METADATA
The proposed scheme is a distributed framework that inte-
grates vehicular nodes, fog nodes, and the cloud. The vehic-
ular sensed data and metadata defined in section IV-B are
maintained in a cooperative manner among these nodes.
In this section we first introduce types of the metadata,
then describe a passive delay-tolerant approach for metadata
upload, and briefly discuss the issue of handing over PVs
among fog nodes.

A. TYPES OF METADATA
Generally, there are roughly three types of metadata in the
FPVS.

1) Metadata of vehicles: include the current path, the set
of requests, the remaining seats of the vehicle, and etc.
These data are generated when PVs or passengers join
in or leave the system. Given these data, the load of
service within the service area could be estimated.

2) Metadata of traffic condition: include the network of
road, the speeds of road segments, traffic lights, and
realtime traffic conditions such as accidents, and etc.
Some cost calculations, e.g. speeds of road segments,
are done locally at vehicular nodes and then uploaded
to the fog node. The travelling cost could be estimated
in real time based on these data.

3) Metadata of ride demand: include the time, the origin
and destinations of trip requests. Given these data,
i.e. the accumulated historical dataset, the pattern of
trips within the area could be estimated. Several recent
research have addressed this issue within a centralised
framework [31], [32].
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In this research we mainly utilise the first two types of
metadata, and assume the ride demand, i.e. the third type of
metadata, is given at real time. The metadata are maintained
and updated, a large part of which are through the V2V and
V2I communications. However, due to the sparseness of some
suburban areas and the lack of enough fog nodes, it is not
uncommon that some regions in the service area of a fog
might not be covered by be communication range of the fog.
In these scenarios, vehicles would forward their metadata to
their neighboring nodes using the classic V2V protocols, such
asMaxProp [33], CBF [34] and TO-GO [35], and then upload
the data through V2I communications.

B. PASSIVE DELAY-TOLERANTE METADATA UPLOAD
FPVS adopts a passive delay-tolerant strategy to diffuse and
upload metadata. If a vehicular node, e.g. v, is not within
the coverage of any fog node, it would calculate an expected
length of time interval to connect to a fog node, denoted by β:

β = cost(lv, bf ) (23)

where lv is the current location of v, bf is the border of the cov-
erage area of fog node f , and cost(lv, bf ) is the estimated cost
of time for v to travel to the coverage area of f . As depicted
in Fig. 2, each vehicular node has a time-dependent road
network stored in its local storage, so it is able to estimate
the travelling cost cost(lv, bf ). Here we omit the detailed
descriptions of the trivial calculations. It is easy to see that
β is also the expected length of time interval for v to upload
its metadata through the V2I communications.

A message that wraps the metadata of a vehicular node v
is denoted by msg(t0, η, v, data), where t0 is the timestamp
when the message is generated, η is an interval of delay
within which the message should be uploaded to fog or the
cloud before t0+ η, data is the detailed metadata. According
to the current time now and the length of time interval β,
the vehicular node v, which is not covered by any fog nodes,
would adopt different strategies to diffuse msg:
1) now+ β ≤ t0 + η. It means node v is able to enter the

coverage of a fog node before the deadline of metadata
uploading. Therefore, the metadata is just carried at v.

2) now+ β > t0 + η and node v encounters a node x that
satisfies now+x.β ≤ t0+η. It means x is going to enter
the coverage of a fog before the deadline ofmsg. In this
case, msg is forwarded to node x, and x is responsible
to upload the message, or re-forward it to other nodes.

3) (t0 + η)− (now+ β) < ε, where ε > 0 is a predefined
small value of time interval. It means the deadline
of the message upload is approaching. In this case,
the message is uploaded through the 4G channel, where
the metadata are first routed to the cloud, and then
forwarded to the fog that vehicles currently belong to.

Algorithm 2 the is pseudocode of message handling for
the metadata upload at vehicular nodes. Lines 3-7 correspond
to strategy 2, lines 8-12 correspond to strategy 3. Note that
in line 8, the node monitors all the messages in its storage
by periodically checking. The check_time_unit is a system

Algorithm 2 Messages Handling of Metadata Upload at
Vehicular Node v
1 if generates or receives msg then
2 insert msg local storage;

3 if v encounters node x then
4 for all msg in local storage do
5 if now+ β > msg.t1 and now+ x.β ≤ msg.t1

then
6 send msg to node x;
7 remove msg from v;

8 for every check_time_unit do
9 for all msg in local storage do
10 if msg.t1 − (now+ β) < ε then
11 send msg to the cloud through 4G;
12 remove msg from v’s storage;

defined time interval for checking messages that are close to
their deadlines of upload. Those messages are to be sent to
the cloud by 4G, and then forwarded to the fog nodes that
vehicles currently belong to. Similarly, the fog is able to route
messages to PVs either through the V2I/V2V communica-
tions, or through the cloud as an intermediate node.

C. HAND OVER AMONG FOG NODES
When a vehicle moves along its path, it transits from one fog’s
service area to another. Here we assume seamless scheme
is used for the handover [36], and the IEEE 802.11p-based
wireless access system could take advantage of the fixed-
order placement of the RSUs and unidirectional movement of
the vehicles along the highways. When the handover is done,
the vehicle is assigned to a new fog node, and its metadata are
sent to the new fog node and reside in that node.

VII. PERFORMANCE EVALUATION
A. ENVIRONMENTAL SETUP
We conduct experiments on the ONE platform [37] with real-
world road network to verify the performance of the proposed
FPVS scheme. The ONE is a popular simulation environment
that is capable of generating node movement using different
movement models and routing messages between nodes with
various routing algorithms. The Xiamen Taxi Dataset [38] is
used for the simulation. The dataset consists of the position
trajectories that records the position of taxis and the opera-
tion trajectories that records the journey of taxis. The one-
month trajectory dataset is of about 5000 taxicabs in Xiamen
city, China during July 2014, totally about 220 million GPS
position records and 8 million live trips. On the time aspect,
the dataset covered all the daytime and nighttime on both
weekdays and weekends, being able to disclose mobility
patterns in heavy,moderate, and light traffic conditions. Fig. 4
shows the hourly average number of requests in Xiamen
Island, Xiamen City on 16-17 th, July, 2014. Requests are
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FIGURE 4. Hourly average number of requests in Xiamen Island, Xiamen
City on 16-17 th, July, 2014.

FIGURE 5. Accumulated number of requests in Xiamen Island, Xiamen
City on 16-17 th, July, 2014. Requests are mapped to grids, and each grid
has a width of 0.001 degree of longitude and a length of 0.001 degree of
latitude. And 120 RSUs (blue circles) are evenly deployed on the map
along the roads.

extracted from the dataset. Suppose the real pickup time of a
rider in the dataset is pk , the constraint window of the request
is set as [pt − 4, pt + 4]. By default, the threshold for the
detour ratio is 1.8, K and K ′ that select the top K vehicles
and the top K ′ fog nodes according to the load of service
are both set 3. The balance factor α in Eq. 17 has relatively
good performance at range [0.32,0.70], so it is set 0.5 by
default. The communication range of fog nodes δ in Eq. 19
is 450 meters. Fig. 5 depicts the distribution of the requests
based on grids. Each grid has a width of 0.001 degree of
longitude and a length of 0.001 degree of latitude, and the
number of requests that belong to grids and the locations of
RSUs are showed. And 120 RSUs (blue circles) are evenly
deployed on the map along the roads. The communication
range of I2I or I2V used by the vehicles to exchange data is
set to 300 meters, while the 4G channel does not have the
limit of communication range.

B. OVERALL PERFORMANCE
The service ratio, waiting time and share factor are used to
measure the overall performance of the schemes. The service
ratio is defined as the number of successful picked up requests
divided by the total number of requests. The share factor is
defined similar to [5]:

∑
r dr
dV

, where dr is the distance that
a request r travels, and dV is the total distance that all the
vehicles travel.

TABLE 1. Overall performance of the schemes.

Table 1 compares the performance of the proposed pubic
vehicle system with the taxi system. A taxi is assumed to be
occupied by one rider, yet a PV can share and have as many
as 10 riders. The simulation begins at the peak period of 9 pm
to 12 pm, and has about 4.66×104 requests. From Table 1 we
can see that the service ratio of FPVS is about 0.2137 when
200 PVs are deployed, which is very close to that of Taxis
when 1000 vehicles are deployed. This is because PVs are
shared among riders, and they have an average share factor
as high as 5.322. The share factor of the Taxi scheme is
lower than 1.0, i.e. about 0.85, which reflects the deadhead
distances when no riders are on board. So FPVS is able to
achieve the same service ratio with much fewer vehicles than
Taxi. When about 400 PVs are deployed, about 40 percent of
the requests are picked up successfully. Also, the waiting time
in the FPVS is about 6.3 minutes, which is about 3 minutes
more than that of the Taxi scheme.

C. FOG-BASED VEHICULAR SENSING
To verify the effectiveness of vehicular sensing and local pro-
cessing, we also conducted three other schemes: 1) Central-
Raw: vehicles connect to the cloud. All raw vehicular
sensing data are routed to the cloud by the 4G channel;
so do the requests and commands; 2) Central: similar to
Central-Raw, but the sensed data is processed at local nodes.
Only the aggregated metadata are uploaded to the cloud;
3) FPVS-Raw: similar to FPVS, vehicles connect to fog
nodes and the cloud. But all raw vehicular sensing data are
routed to the fog through V2V/V2V communications. All the
4919 taxis in the dataset are involved for the sensing and
metadata gathering. The bandwidth of the 4G channel is
set 20 Mbps/5 Mbps for the down/up links, the bandwidth
of the V2V or V2I channel is 500 Kbps/250 Kbps for the
down/up links. Ideal links are assumed when two nodes meet
and establish a connection, and the requests, commends and
metadata could be wrapped into one message respectively.

Fig. 6 compares the number of message transmissions
of various schemes. The numbers of message transmissions
of the Central and FPVS are much smaller than those of
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FIGURE 6. Comparison of message transmissions.

the Central-Raw and FPVS-Raw, and more than 60 percent
of messages are saved, which indicates the effectiveness of
local processing. Vehicular nodes do some local processing
and reduce the size of the metadata to be uploaded. Also,
the number of total transmissions in FPVS is more than
2.5 times larger than that of the Central schemes. This is
due to the infectious nature of V2V/V2I communications
where messages are forwarded among encountered nodes to
be uploaded. Yet according to [39], the cost of V2V/V2I com-
munications would be much smaller than the 4G channel that
is operated by centralized telecommunications companies.
Although FPVS has larger message transmissions, its cost is
actually lower because the price of 4G is higher than that of
V2V/V2I. In this research, the cost of the 4G channel is set
10−2 $/MB and theV2V/V2I channel is set 10−4 $/MB. From
Fig. 7 we can see that the Central-Raw scheme incurs the
largest cost of 10.11$, and FPVS has the least cost of 0.93 $,
which indicates the potential cost reduction of local process-
ing at vehicular sensing applications.

FIGURE 7. Cost of transmissions.

We also studied the impact of η, which is an interval
of delay within which the message should be uploaded to
fog or the cloud. As depicted in Fig. 8, the number of
V2I/V2V messages increases, and the number of 4G mes-
sages decreases when η increases from 1minute to 4 minutes.
This is because larger delay means vehicular nodes have
more time before the deadline of upload, and do not need
to rely on the 4G channel for metadata gathering. Instead,
nodes carry the metadata and forward the metadata messages
when encountering vehicular nodes, and finally upload the

FIGURE 8. Impact of the delay of metadata upload.

data to the fog through V2I transmissions. However, when
the delay grows larger, i.e. 6 or 8 minutes, the vehicular
nodes have large probability to enter the coverage of a fog
node, so they just carry the metadata till they re-connect to
fog nodes. Forwarding messages to other vehicular nodes is
suppressed in these scenarios, so the number of V2I/V2V
messages decreases. Furthermore, when the upload delay is
larger, the node could wrap multiple data readings into a
message and upload it to the fog, which reduce the number
of message transmissions. Fig. 8 also shows that delay has
relatively little impact on the service ratio, which decreases
from 0.4038 to 0.3902 when η increases from 4 to 8 minutes.
As the cost of 4G is assumed to bemore expensive than that of
the V2I/V2V communications, the delay of metadata upload
could be tuned to achieve a relatively low transmission cost
and a high service ratio.

D. IMPACT OF DETOUR RATIO THRESHOLD
AND PICKUP TIME WINDOW
The detour ratio and pickup time window reflect riders’
requirements, and they could be tuned to fit the real scenarios
by the system operator. In the experiment, we also varied their
values to study their impact on the performance. As illustrated
in Fig. 9, the service ratio and share factor increase with the
threshold of the detour ratio. The service ratio increases from
0.25 to 0.46when the detour ratio grows from 1.2 to 2.0.More
requests are accepted without violating the detour constraints
when the threshold is set higher, so both the service ratio
and share factor increase. Fig. 10 shows the service ratio and
waiting time increasewith the size of the pickup timewindow.
The service ratio increased from 0.31 to 0.44 when the size
of the pickup window grows from 2 to 10 minutes. This also
means the rider would have towait longer before being picked
up, which is also showed in the figure. So increasing the
detour ratio threshold and the size of pickup time window
result a higher service ratio, yet it is also at the cost of riders’
comfort.

E. IMPACT OF NUMBER AND CAPACITY OF PVs
Fig. 11 shows the impact of the number of PVs. It is clear
that when more PVs are deployed to the road network, more
requests could be satisfied, and with smaller delay. We see
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FIGURE 9. Impact of detour ratio threshold.

FIGURE 10. Impact of pickup time window.

FIGURE 11. Impact of number of PVs.

a gradual increase of the service ratio and a decrease of the
waiting time as the number of vehicles grows from 100 to
around 900. However, more PVs, e.g. more than 900, have
not much impact to increase the service ratio and waiting
time. The service ratio is about 0.71 and the waiting time is
about 4.9 minutes when more than 900 PVs are deployed.
This is largely due to the the constraint time window and
threshold of detour ratio, where requests that do not satisfy the
constraints would be rejected, leading to failures of service.
Besides the deployed PVs, we also add 800 taxis to analysize
the overall performance. As showed in Fig. 11, FPVS plus
taxis has better performance in both the service ratio and
the waiting time. It achieves more than 80 percentage of
service ratio when extra taxis are deployed and the number
of PVs are more than 900. The waiting time also decreases

about 0.4 minutes. This indicates that combining the PVs
and taxis is an feasible solution to satisfy the demands of the
riders. The proposed scheme achieves better transportation
efficiency due to the sharing nature of PVs.

FIGURE 12. Impact of capacity of PVs.

Fig. 12 shows the impact of the capacity of PVs. It is clear
that larger capacity means holding more riders at the same
time, so both the service ratio and share factor will grow with
the capacity of vehicles. Specially, the service factor increases
from 0.18 to 0.53, the share factor increases from 2.4 to
7.0 when the capacity increases from 4 to 20. Yet when the
capacity is relatively large, e.g. greater than 10, the increase
becomes smooth. The share factor is about 6.45 when the
capacity is 18, and 7.0 when the capacity is 20. This indicates
there are some limits when using larger PVs to pickup the rid-
ers. On the contrary, PVs that have small or median capacity
are more flexible to pickup riders and it would achieve higher
service ratio if more vehicles are deployed.

VIII. CONCLUSIONS
In this paper, we have proposed a distributed public vehicle
scheduling system that integrates fog nodes and vehicular
sensing. The proposed FPVS includes components of meta-
data gathering, cost estimation, request answering and PVs
scheduling. Fog nodes act as intermediate nodes to store and
gather metadata, which are sensed and extracted by vehicular
nodes. And the system adopts a heuristic request insertion
algorithm, as well as a cooperative strategy among vehicles
nodes, fog nodes, and the cloud to dispatch requests and to
schedule routes for PVs. Experimental studies in real-world
datasets demonstrate that FPVS achieves higher service ratio
of requests and better efficiency than other transportation
methods, and the distributed vehicular sensing is capable
of collecting feasible metadata for scheduling applications.
To the best of our knowledge, this research is the first step
of integrating fog nodes and vehicular sensing for request
responsive scheduling systems.

The integration between the RDRS system and VANETs
is attracting more and more attention in the research commu-
nity. For future work, we are going to further investigate the
cooperation strategies among the cloud, fog, and the vehicular
nodes; and we plan to study the optimized placement and
coverage of fog nodes within the proposed FPVS framework.
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