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A Compressive Sensing Approach to Urban Traffic 
Estimation with Probe Vehicles 

Yanmin Zhu, Member, IEEE, Zhi Li, Hongzi Zhu, Member, IEEE, 
Minglu Li, Member, IEEE, Qian Zhang, Fellow, IEEE 

Abstract—Traffic estimation is crucial to a number of tasks such as traffic management and road engineering. We propose an 
approach for metropolitan-scale traffic estimation with probe vehicles that periodically send location and speed updates to a 
monitoring center. In our approach, we use the flow speed on a road link within a time slot to indicate the traffic condition of the 
road segment at the given time slot, which is approximated by the average value of probe speeds. By analyzing a large da-
taset of two-year probe data collected from a fleet of around 4,000 taxis in Shanghai, China, we find that a set of probe data 
may contain a lot of spatiotemporal vacancies over both time and space. This raises a serious missing data problem for road 
traffic estimation, which results from the naturally uneven distribution of probe vehicles over both time and space. Through 
empirical study based on the dataset of real probe data using principal component analysis (PCA), we have observed that 
there are hidden structures within the traffic conditions of a road network. Inspired by this observation, we propose a com-
pressive sensing based algorithm for solving the missing data problem, which exploits the hidden structures for computing 
estimates for road traffic conditions. Different from existing approaches, our algorithm does not rely on complicated traffic 
models which usually require costly training with field study and large datasets. With extensive experiments based on the 
dataset of real probe data, we demonstrate that our proposed algorithm performs significantly better than other completing 
algorithms, including KNN and MSSA. Surprisingly, our algorithm can achieve an estimate error of as low as 20% even when 
more than 80% of probe data are missing. 

Index Terms—Probe vehicles, traffic estimation, traffic condition matrix, compressive sensing.  

——————————      —————————— 

1 INTRODUCTION 
raffic congestion has a significant negative impact 
on social and economic activities around many cit-
ies in the world [18]. Road traffic monitoring aims 

to determine traffic conditions of different road links, 
which is an essential step towards active congestion 
control. Many tasks, such as trip planning, traffic man-
agement, road engineering and infrastructure planning 
can benefit from traffic estimation. As an example, 
Shanghai, the largest metropolis in China, is undergo-
ing rapid economic growth, but meanwhile suffers 
constant traffic congestion. To mitigate the burden of 
the underlying road networks, efficient traffic man-
agement is of great importance, and metropolitan-scale 
traffic estimation is valuable to traffic management.  

Traditional approaches for traffic monitoring rely on 
the use of static traffic sensors, such as inductive loop 
detectors and video cameras. Vehicle loop detectors 
and close-circuit video cameras are usually deployed at 
roadside to detect flow velocity, and traffic density [7, 
11, 33]. The coverage of such traditional approach is 
limited due to the high infrastructure deployment and 
maintenance cost [17]. This suggests that it is infeasible 

to install loop detectors and video cameras densely to 
cover the entire road network.  

With the growing prevalence of Global Positioning 
System (GPS) receivers embedded in vehicles and 
smartphones, there have been increasing interests in 
using their location updates or trajectories for monitor-
ing traffic [3, 18]. In this paper we present an approach 
to perform metropolitan-scale traffic estimation with 
probe vehicles. Equipped with a GPS receiver, a probe 
vehicle can detect its instant location and speed. A 
probe vehicle periodically sends its location and speed 
update (or probe data report) to a monitoring center for 
traffic estimation. Such updates can be transmitted via 
the data service of a widely available cellular wireless 
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Figure 1. A subnetwork of Shanghai, China, along with the dis-
tribution snapshot of probe vehicles on the road network, where 
a dot represents the location of a probe taxi. 
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network, such as GSM/GPRS. In Figure 1, a distribu-
tion snapshot of a fleet of probe taxis over the down-
town subnetwork of Shanghai is shown. 

We consider the traffic condition of a road segment 
(or link) between two neighboring road intersections or 
signals in a time slot. In our approach, we use the flow 
speed on this link within the time slot to indicate this 
traffic condition, as used by previous studies [6, 33]. 
Since the flow speed is a random variable, we use the 
mean of the speed. In practice, we use the average of 
the speeds of probe vehicles driving on the link in the 
time slot to approximate the mean of the speed.  

This approach to traffic estimation with probe vehi-
cles has salient advantages [18]. First, as these public 
vehicles traverse most of the road segments in the city, 
the system provides a large coverage. Second, because 
of the low cost of onboard GPS receivers, the overall 
system deployment cost is low.  

However, it is challenging to perform traffic estima-
tion with speed measurements from probe vehicles. 
Because the distribution of probe vehicles over space 
and time is uneven, the set of received probe data is 
incomplete over time and space, or contains spatio-
temporal sampling vacancies. This raises a serious 
missing data problem for road traffic estimation. This 
problem has been confirmed with our analysis on the 
large dataset of real probe data collected from a fleet of 
4,000 taxis in Shanghai, China. It is important to note 
that probe vehicles move at their own wills. They can-
not not be deliberately controlled in order to achieve a 
better coverage over time and space of the set of re-
ceived speed measurements. In addition, the reception 
of probe data is vulnerable to the influence of the urban 
environment. For example, when a vehicle moves 
through a road with surrounding tall buildings 
(so-called urban canyons) because of attenuation and 
multipath propagation of radio signals [15].  

There are a few existing studies [5, 6, 18] on traffic es-
timation with sparse probe data. A probabilistic mod-
eling framework for estimating arterial travel time dis-
tributions using sparsely observed probe vehicles is 
proposed in [18]. They model the evolution of traffic 
states as a coupled hidden Markov model which can be 
trained for estimating model parameters. However, this 
approach assumes that the evolution of traffic states is 
stationary, which may not be true in the real world. 
Furthermore, this approach requires costly training 
with field study and large sets of probe data. In [5, 6], 
spare bus probe data are used for estimating velocity 
fields of a road network. Nevertheless, the authors do 
not address the problem of recovering missing traffic 
conditions of those road links for which no probe data 
have been received.  

In this paper, we propose a data analytics technique 
to solving the critical missing data problem inherently 
associated with the approach for road traffic estimation 
with probe vehicles. By using principal component 
analysis (PCA), we analyze the dataset of probe data 

collected from taxis in Shanghai, and reveal that there 
evidently exist hidden structures with the traffic condi-
tions of a road network. Inspired by this important ob-
servation, we propose a compressive sensing based 
algorithm for solving the missing data problem, which 
exploits the hidden structures for computing estimates 
for road traffic conditions. A matrix of traffic conditions 
is introduced, where a row represents a time slot and a 
column represents a road segment. Our algorithm lev-
erages the low rank nature of a traffic condition matrix 
and determines an estimate matrix that complies with 
the observed traffic conditions derived from the set of 
received probe data. Experiments based on the large 
dataset of real probe data show that our algorithm sig-
nificantly performs better than three competing algo-
rithms, i.e., Naïve K-Nearest Neighbors (KNN), corre-
lation-based KNN, and Multi-channel Singular Spec-
trum Analysis (MSSA). We have made the following 
technical contributions in the paper.  

 By analyzing the large dataset of real probe data 
collected from a fleet of around 4,000 taxis with 
PCA, we reveal that there exist hidden structures 
with traffic condition matrices.  

 We develop an offline data analytics algorithm for 
solving the missing data problem based on the 
compressive sensing theory, which explicitly ex-
ploits the hidden structures. Some optimization 
techniques are proposed for computing estimates 
for those missing traffic conditions.  

 Through comprehensive experiments with the da-
taset of real probe data, we show that our algorithm 
significantly outperforms the competing methods. It 
can achieve an estimate error of as low as 20% even 
when more than 80% of probe data are missing. 

The rest of this paper is organized as follows. In Sec-
tion 2, we present the overview of our approach and 
formally define the problem of traffic estimation. We 
reveal the existence of hidden structures in traffic con-
dition matrices and give the design details of the pro-
posed algorithm in Section 3. In Section 4, we present 
experiment results. We review related work in Section 5. 
We conclude the paper and introduce future work in 
Section 6. 

2 OVERVIEW 
In this section, we first introduce the collection of the 
important dataset of real probe data, then define the 
problem, and finally discuss the missing data problem.  

2.1 Collection of Probe Data 
Each probe vehicle is equipped with a GPS receiver 
which continuously detects instant location and speed. 
A probe data update includes vehicle identification, 
instant speed, location in longitude and latitude, and 
timestamp. The speed is the instantaneous speed di-
rectly provided by the GPS receiver.  

Note that there may exist a privacy concern if each 
vehicle simply reports all its locations because it may 
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release sensitive information, such as the home location. 
It is out of the scope of the paper, however, to address 
the privacy issue. Some researchers specially focus on 
privacy issues in the context of traffic monitoring and 
possible solutions [19, 20] have been provided.  

A probe data report is sent from moving vehicles to 
the monitoring server via a wireless data service pro-
vided by a cellular network. The typical data rate of 
GSM/GPRS is around 20 Kbps. The size of a probe re-
port is relatively small, around 40 bytes. For each vehi-
cle, probe reports are sent to the monitoring server pe-
riodically. In our approach, the reporting interval varies 
from 30 seconds to several minutes. It depends on the 
availability of GPRS availability. Thus, the bandwidth 
of GPRS is sufficient to support the delivery of probe 
data back to the monitoring server. 

2.2 Problem Description 
We next formally state the problem of traffic estimation 
with probe data. We first introduce some notations. The 
set of probe vehicles are denoted as . For a probe ve-
hicle, , it moves along the roads and sends its 
location and speed update from time to time. The up-
date of probe data at time  is denoted by 

, where  is vehicle ID,  de-
notes its location (longitude & latitude), and  de-
notes its speed. Let  denote the set of timestamps at 
which vehicle  sends its probe data,  

, in which  and  are the first timestamp and the 
last timestamp, respectively. Thus, vehicle  has a set 
of probe measurements, . Note that 
for different probe vehicles, the set of timestamps may 
be different.  

We consider the traffic condition of a road segment 
between two neighboring road intersections in a given 
time slot. It is not straightforward to devise a single 
metric for quantifying the traffic condition of a given 
road segment at a given time. Many metrics have been 
proposed in the traffic engineering area for quantifying 
the traffic condition of a link, such as flow speed, den-
sity, length of queues) [6, 14, 18]. We adopt the speed of 
the traffic flow on the link to indicate the traffic condi-
tion of this link, as used in previous studies [15, 33]. 
Since the traffic flow consists of vehicles travelling on 
the link, the speed of the traffic flow can be considered 
as the speed of a vehicle in the flow, which is a random 
variable. We focus on the mean of the speed to indica-
tor the traffic condition. It is meaningful since if the 
flow has a higher speed, a vehicle in the flow can gen-
erally drive at a higher speed.  

Thus, we formally define the traffic condition of a 
road segment in a given time slot as follows. 

Definition 1 (traffic condition): The traffic condition of a 
road segment  in a given time slot denoted as , is 
defined as the mean of the speed  of a vehicle driving 
within the traffic flow on this road segment in the time slot, 
i.e., . 

In practice, we use the average of the speeds of all 
probe vehicles on the road segment within the time slot 
to approximate the mean of the flow speed. The aver-
age is computed over different probe speeds of all ve-
hicles. In the definition of traffic condition, we have 
made this assumption that traffic conditions on a seg-
ment is uniform during each time slot.  

It should be noted that the approach of using average 
speeds to indicate the traffic state of a road segment has 
certain limitation. By this approach the quality of traffic 
states monitoring is related to the sampling process of 
probe vehicles. Clearly, as there are more probe data, 
the quality of resulting traffic states estimation is better. 
In our work, however, the average value of probe 
speeds is considered as the real state of a road segment. 
This work does not explicitly consider the impact of the 
number of probe samples. This issue will be further 
investigated by future work.  

We are interested in the traffic conditions of a given 
set of road segments  at a given set of time slots ,  

0 1 2 1
, , , ,

n
r r r r . (1)

0 1 2 1
, , , ,

m
T t t t t . (2)

The traffic condtions of  over  form a traffic 
condition matrix (TCM), denoted by , or simply , 

,TCM r t m n
X x . (3)

where  is the traffic condition of road segment  in 
time slot .  

It is difficult to obtain a complete traffic condition 
matrix as there may exist many spatiotemporal vacan-
cies with no probe measurements. There is no guaran-
tee that the monitoring server to receive probe meas-
urements for each road segment within every time slot. 
This raises a serious missing data problem, which will 
be further demonstrated with empirical study with the 
dataset of real probe data in Subsection 2.3.  

In fact, we are given a measurement matrix 
:  

,

,

.

[ ]

0,   if no probe data for  in slot 

1,    otherwise

TCM TCM

r t m n

r t

M X B

B b

r t
b

. 
(4)

where the matrix  is an indicator matrix and  is an 
operator of dot product. For two matrices of the same 
size,  and , their dot product 
Z , , where m, 

. The goal is to obtain an estimate  for  
when given , with the objective of minimizing the 
normalized mean absolute error of the estimate.  

Definition 2 (Normalized mean absolute error): The 
normalized mean absolute error  of an estimate  for 

 is 
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, ,
, , ,, : 0 , : 0

ˆ| | | |.
r t r t

r t r t r tr t m r t m
x x x  (5)

Then, we formally define the problem as follows. 

Definition 3 (Traffic estimation problem): Given the set 
of probe measurements from probe vehicles, the traffic es-
timation problem is first to obtain the measurement matrix 

, and then to find an estimate  for the real traffic con-
dition matrix , with the objective of minimizing the 
normalized mean absolute error of the estimate .  

2.3 Sparse and Uneven Distribution of Observed 
Probe Data 
We show the sparse and uneven distribution of the set 
of received probe measurements from probe vehicles, 
which raises the serious missing data problem.  

We first define a metric of integrity as follows.  

Definition 4: Let  be the indicator matrix for matrix . 
The integrity of , denoted by , is defined as the 
fraction of non-zero elements.  

sum( )
( )

size( )

B
M

B
. (6)

We analyze the impact of the number of probe vehi-
cles on the integrity of the measurement matrix by ex-
tracting the probe data of a subset of probe vehicles 
from the complete set of probe data. We analyze the 
sets of probe data of 500, 1,000, 2,000 taxis over a dura-
tion of 24 hours on Feb 18, 2007, respectively. All the 
taxis were running in the inner region of Shanghai, in 
which there are 5,812 road segments. By default, we set 
the time granularity (i.e., the length of time slot) to 15 
minutes in this empirical study.  

First, we study the integrity for a given road segment, 
by which we can learn the missing data issue over time. 
Figure 2 shows the empirical cumulative distribution 
functions (CDFs) of integrity of all roads under differ-
ent numbers of vehicles, i.e., 500, 1,000 and 2,000. We 
can see that when there are 500 probe vehicles, nearly 
95% of roads have an integrity of less than 60%. This 
means that these roads have no probe measurements 
for more than 40% of time. Generally, when we deploy 
more probe vehicles, the integrity can be improved. 
However, even when 2,000 probe vehicles are em-
ployed, there are still nearly 80% of roads whose integ-
rity is less than 60%. More importantly, we find that 

nearly 50% of road segments have an integrity close to 
zero. This indicates that no vehicles have travelled 
through these road segments within some single slots. 

Next, we consider the integrity at a given time snap-
shot. In this way, we can learn the missing data issue 
over space. In Figure 3, we plot the CDFs of integrity of 
all time slots under different numbers of probe vehicles, 
i.e., 500, 1,000 and 2,000. We can see that when there are 
500 probe vehicles, nearly 100% of time slots have an 
integrity of less than 18%. This indicates that almost for 
all slots, more than 82% of road segments have no 
probe measurements.  

Finally, we study the integrity of measurement ma-
trices for different time granularities. Table 1 shows the 
integrities under different time granularities when 
there are 500, 1,000 and 2,000 probe vehicles. We can 
find that even when there are 2,000 probe vehicles, the 
integrity is as low as 24.8% when the time granularity is 
15 minutes and 37.64% when the time granularity is 60 
minutes. 

In summary, we find that the missing data problem 
is serious. The possible solution to improving the integ-
rity is to deploy more probe vehicles. However, this 
may increase cost, and be impractical in some situations, 
e.g., there is no way to employ more probe vehicles. 

TABLE 1 
INTEGRITY SUMMARY (FEB 18, 2007) 

Time gran. =500 =1,000 =2,000 
15 min 12.22% 18.28% 24.80% 
30 min 18.57% 25.18% 31.61% 
60 min 25.53% 31.98% 37.64% 
 

3 COMPRESSIVE SENSING BASED ALGORITHM 
The goal is to compute an estimate of the traffic condi-
tion matrix for the real traffic condition matrix with the 
objective of minimizing the estimate error. We propose 
a compressive sensing based algorithm to effectively 
exploit the hidden structures. Compressive sensing [12] 
is an effective technique for exploiting the hidden 
structures of real-world datasets for tasks such as com-
pression and signal reconstruction. In this section we 
first reveal the existence of hidden structures with traf-
fic condition matrices, then give the preliminary of 
compressive sensing, and finally delve into the design 
details of the algorithm.  

 
Figure 2. CDF of integrity of roads. Figure 3. CDF of integrity of time slots. Figure 4. Magnitude of singular values 

(with Log scale X axis). 
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3.1 Revealing Hidden Structure 
The traffic conditions of different road segments over 
different times are not independent. There exist struc-
tures. We reveal such hidden structures by using prin-
cipal component analysis (PCA). We use the same da-
taset of probe data collected from the fleet of taxis in 
Shanghai, China as introduced previously.  

PCA is an effective non-parametric technique for re-
vealing sometimes hidden, simplified structure that 
often underline a dataset. It is a commonly used tech-
nique for analyzing high dimensional data (or struc-
tures) [24]. Given a high dimensional dataset such as a 
matrix of traffic conditions corresponding to a set of 
road segments and a set of time slots, and its associated 
coordinate space, PCA can nd a new coordinate space 
which is the best one to use for dimension reduction of 
the given dataset. After finding this new coordinate 
space, we can project the high dimensional dataset onto 
a subset of the axes with the objective of minimizing the 
error. In summary, given a high dimensional dataset, 
we can find a small dataset to approximate the original 
high dimensional dataset.  

Any matrix  can be decomposed to three matrices 
according to the singular value decomposition (SVD): 

min( , )

1

n mT T
i i ii

X USV u v  (7)

where  is the transpose of ,  is a  unitary 
matrix (i.e.,  = = ), is a  unitary 
matrix (i.e.,  =  = ), and  is a  
diagonal matrix constraining the singular values  of 

. Let  be larger than , , where  is 
the rank of . The rank of a matrix equals the number 
of its non-zero singular values. Here  is the unit ei-
genvector of  corresponding to the -th principal 
component. We call  an eigenflow of  [24].  

, i=1,2, ,min( , )
i i i
u Xv m n . (8) 

According to (7),  is a coefficient of the -th prin-
cipal component which we may explain as the energy 
of the -th principal component. 

In Figure 4, we present the magnitude (ratio to the 
maximum) of singular values. This figure suggests that 
most of the energy is contributed by the first few prin-
cipal components. The existence of the sharp knee is a 
result of some common structures among different in-
terested road segments, which will lead the traffic con-

dition matrix to a low rank.  
The information of a dataset is mainly contained by 

the first few components. We reconstruct the traffic 
matrix using only the first five principal components. 
Figure 6 shows the reconstructed traffic condition over 
times of a given road segment in which the time gran-
ularity is 30 minutes. We can see that the reconstructed 
traffic conditions sketches the variation of the original 
ones quite well. The root mean square error between 
the two series of traffic conditions is around 9.67.  

Then, we look at the characteristics of eigenflow . 
A time series  can be presented as a linear combina-
tion of  with associated weight . 

( ) ,     1,2, ,min( , )T
i i i
X U V i m n  (9)

where  is the -th row of . 
All the eigenflows can be divided into three types. 

Let  denote the type of an eigenflow, 
. Its type is determined as follows, 

1,  if | ( ) |  contains a spike

( ) 2,  if  contains a spike

3,  otherwise

i

i i

FFT u

C u u . (10)

Note that the construction of three types are mutually 
exclusive. If the difference of the value and the average 
is larger than four times the standard deviation, the 
value is a spike. 

When the signal of an eigenflow is periodic (i.e., its 
FFT energy contains an evident spike), this eigenflow 
belongs to the first type. An eigenflow of the first type 
is considered as deterministic, i.e., this type of 
eigenflows contains the majority of information in the 
datasets. If an eigenflow does not belong to the first 
type and its signal contains a spike, it belongs to the 
second type. The spike in the eigenflow of the second 
type indicates that the original datasets also have a 
corresponding spike. The rest of the eigenflows belong 
to the third type. An eigenflow of the third type con-
tains little information and can be considered as con-
taining only noises.  

The previous explanation is illustrated in Figure 5 
and Figure 7. In Figure 7, we reconstruct the traffic 
conditions over time at a given road segment by using 
only the basis corresponding to the specific type of 
eigenflows. We find that the first type contains most 
information and sketches the variation of the original 

   

Figure 5. Time series represented by three types of eigenflows (left: the first type; middle: the second type; right: the third type)  
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series of traffic conditions quite well. The second type 
of eigenflows contribute signal spikes, and the third 
type contains little information with a mean value close 
to zero.  

Figure 8 shows the occurrences of eigenflow types in 
the increasing order of singular values. The most im-
portant information often comes from the eigenflows of 
first type, which correspond to singular values. 

In summary, our empirical study using the principal 
component analysis demonstrates that there are hidden 
structures with traffic condition matrices. This lays the 
foundation for our compressive sensing based algo-
rithm for estimating missing traffic conditions. 

3.2 Preliminary of Compressive Sensing 
We have revealed that there exist hidden structures in 
traffic condition matrices. Compressive sensing [4] is an 
effective technique for a number of tasks, such as data 
compression and signal processing [10, 12]. The main 
idea of compressive sensing is that signals or datasets 
in the real world often contain structures or redundan-
cy (i.e., they are not pure random noises). This nature 
can be used as prior knowledge for compression and 
reconstruction of signals or datasets.  

Mathematically, a vector with only a few non-zero 
elements is called a sparse vector. Structure or redun-
dancy in datasets is synonymous with sparsity. As pre-
viously shown principal component analysis, a matrix 
of dataset may have only a few large components and 
many small components. Such a vector is considered as 
compressible, in the sense that most of its information 
is actually carried by the large elements. A sparse ma-
trix can be well approximated by a low rank matrix.  

As shown in Section 3, any matrix can be decom-
posed in such a way that it equals the multiplication of 
three component matrices. When the rank is fixed and 
set to , to generate an estimate that approximates the 
original matrix, we keep the  largest components in 
(7) and drop the others. Thus, 

1 1

ˆ .
r r

i i i i i
i i

X u v A  (11)

This  is known as the best rank-  approximation 
with respect to the Frobenius norm  of approxi-

mation errors,  for any matrix [23]. 

Then,  is the solution to the following optimization 

problem, 
ˆmin || - ||

ˆ. . rank( ) .
F

X X

s t X r
 (12)

3.3 Algorithm Design 
To solve the traffic estimation problem, we are given 
the measurement matrix and required to compute an 
estimate of the original matrix. It is impossible to di-
rectly apply (12) as we do not have the knowledge of 
the original matrix and the proper rank.  

As a good estimate, it is reasonable to be as close as 
to the measurement matrix. In addition, the estimate 
matrix should have a low rank as we have revealed in 
the real datasets that they contain certain structures or 
redundancy. Thus, we try to find the low rank estimate,  

ˆmin  rank( )
ˆ. .,  . .

X

s t B X M
 (13)

It is difficult to solve this minimization problem be-
cause it is non-convex.  

To circumvent the difficulty, we make use of the 
SVD-like factorization, which rewrites (13) as follows, 

ˆ T TX U V LR  (14)
where  and . According to the 
compressive sensing literature [9, 30, 31], we can solve 
a simpler problem and obtain an equivalent result un-
der a certain condition. Specifically, if the restricted 
isometry property [30] holds, minimizing the nuclear 
form can perform rank minimization exactly for a ma-
trix of low rank. Here, if the rank of  is smaller than 
that of , then we can apply this technique. That is, 
we just find matrix  and  that minimize the sum-
mation of their Frobenius norms: 

2 2min || || || ||

. .,  . ( ) .

T
F F

T

L R

s t B LR M
 (15)

In practice,  and  that strictly satisfy the con-
straint are likely to fail for two reasons. First, there are 
noises in the probe data, and therefore strict satisfaction 
may lead to the over-fit problem. Second, the rank of a 
traffic condition matrix is only approximately low.   

Thus, we use the Lagrange multiplier method to 
solve (15), 

 

Figure 6. Original and recon-
structed traffic conditions of a 
given road segment using first 
5 principal components (gran. 
is 30 minutes). 

Figure 7. Reconstructed traf-
fic conditions of a given road 
segment by using different 
types of eigenflow. 

Figure 8. Occurrence of eigenflow types in the corresponding 
order of singular values. 
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2

2 2

min  ( ),where

 || . ( ) - ||

 || || || || .

T
F

F F

a b

a B LR M

b L R

 (16)

The Lagrange multiplier  controls the tradeoff be-
tween rank minimization and measurement fitness.  

Many ways can solve the above optimization prob-
lem. We propose an algorithm that is similar to the one 
in [37]. We show the detail Pseudo code of this algo-
rithm in Figure 9. The algorithm starts with a random 
initialization to matrix . It first fixes matrix  and 
then computes matrix . Next,  is fixed and  is 
computed. This process repeats for a fixed number of 
iterations. In implementation, we perform experiments 
to find a good setting of the number of iterations.  

In each iteration, we have to compute either  or  
to minimize the objective (16). We find that reaching 
the objective is equivalent to making both  and  
equal to zero simultaneously. Thus, we have the fol-
lowing when  is given, 

. ( )

0     

T MB LR

R
. (17)

This is a contradictory equation since the number of 
constraints is larger than that of unknown variables. By 
computing the best approximate solution to this con-
tradictory equation with least squares, we can compute 
the best matrix  for satisfying (16).  

We analyze the complexity of the algorithm as fol-

lows. The key operation of Algorithm 1 is the proce-
dure for computing an inverse matrix, which gives the 
best approximate solution to the contradictory equation. 
The procedure is essentially completed by a matrix 
multiplication. Therefore, its complexity is  
where  denote the column number of , the row 
number of , the column number of , respectively. 
The algorithm repeats the procedure for  times. 
Therefore, the total complexity of the algorithm is 

. Note that  is a design parameter of Algo-
rithm 1. Through experiments, we find that the setting 
of =100 makes the algorithm to converge to a steady 
output when the matrix size is of hundreds by hun-
dreds.  

3.4 Design Optimizations 
Two important parameters must be determined in Al-
gorithm 1, i.e., rank bound  and tradeoff coefficient 

According to the principle of compressive sens-
ing, the rank of the approximated matrix should be 
minimized. In Algorithm 1,  is the number of col-
umns in matrix  and , which is smaller than  and 

. Thus, we have  
ˆrank( ) min(rank( ),  rank( ))X L R r . (18)

Thus,  is an upper bound of rank( ), and impacts the 
algorithm performance. 

We should determine the optimal parameters in or-
der for Algorithm 1 to obtain the best performance in 
terms estimate error. However, it is not trivial to de-
termine the optimal parameters. The quality of estima-
tion is a function of the two parameters, denoted by, 

. Then, to obtain the optimal parameters, the 
objective is the following, 

max max ,f r . (19)

We use estimate error to indicate the quality of estima-
tion. The definition of estimate error will be given in 
the next subsection. The key issue is that function  
characterizing the relationship between error and the 
parameters is invisible. 

We propose a genetic algorithm for deriving the op-
timal parameters of rank bound and tradeoff coefficient. 
The strength of this algorithm is that the analytical form 
of the objective is not needed. In this algorithm, esti-
mate errors are used as fitness. We encode the two pa-
rameters as a vector which contains two real numbers. 
The Pseudo code of Algorithm 2 is shown in Figure 10 

We explain the main steps of the algorithm in the 
following.  

1) Initialization. We randomly initialize the popula-
tion representing the two parameters. The size of pop-
ulation is a design parameter of this algorithm.  

2) Selection. Each individual is evaluated against 
fitness. The fitness function is the estimate error, which 
can be evaluated by invoking Algorithm 1 with the pa-
rameters encoded by each individual. Then, the best 
individuals are selected to breed the next generation.  

Algorithm 1: Estimating matrix of traffic conditions. 
Input: 

: measurement matrix 
: indicator matrix 

: rank bound 
 tradeoff coefficient 

: iteration times  
Output: 

: estimate matrix 

1. random_matrix ;  
2. for  
3.    
4.    
5.   
6.   if  <  then 
7.       
8.  
9. end for 
10. ; 
11.  
// contradictory equation 
procedure inverse  
1.  
2. return ;  

Figure 9. The Pseudo code of Algorithm 1.  
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3) Reproduction. Besides the group of individuals 
selected in the selection process, the next generation 
also includes two other groups. By employing the rou-
lette model, one group of offsprings are produced by 
taking the crossover of any two individuals, and the 
other group of offsprings are produced by the mutation 
operation. Specifically, we assign a random value to 
one of parameters within its domain to achieve the 
mutation. 

4) Termination. The algorithm can terminate after a 
fixed number of integrations or after a threshold on 
fitness improvement is met. We adopt a fixed number 
of iterations as the termination criterion.  

There are several design parameters with Algorithm 
2, including bounds of rank bound and tradeoff coeffi-
cient, size of population and number of iterations. The 
lower bound of rank bound  can be set to 1 since it is 
positive, and its upper bound is given by (18). It is not 
easier to determine the bounds of tradeoff coefficient, 
we determine the bounds by experiments. The size of 
population and the number of iterations are also de-
termined by experiments.  

The time complexity of Algorithm 2 can be high since 
each time an individual is evaluated its fitness, Algo-
rithm 1 should be invoked to get the estimate error. 
Fortunately, however, Algorithm 2 is only executed 
once for a given set of road segments. With experi-
ments, we find that for a given set of road segments, 
the two parameters obtained by Algorithm 2 are stable 
over different times.  

4 EXPERIMENTS AND ANALYSIS 
We have performed extensive experiments for evaluat-
ing the performance of the proposed algorithm for traf-
fic estimation. In the following, we first present the 
methodology and the experimental setup. The com-
pared algorithms are then introduced. Finally, perfor-
mance results are presented and discussed.  

4.1 Methodology and Experimental Setup 
We adopt a comparative study, comparing our algo-
rithm with other competing algorithms that will be in-
troduced in the next subsection.  

Experiments are conducted with two datasets of 
probe data. One dataset is from the fleet of 4,000 taxis in 
Shanghai, as introduced before, and the other dataset of 
probe data is from a fleet of 8,000 taxis in Shenzhen, 
China. Both datasets of probe data span a duration of 
one week. Three time granularities, i.e., 15 minutes, 30 
minutes and 60 minutes, are used. 

We choose a subnetwork of 221 road segments in 
Shanghai, and a subnetwork of 198 road segments in 
Shenzhen for experiments. Both subnetworks are from 
a region close to city centers. In comparison, Shanghai 
is more dense than Shenzhen, in terms of distribution 
of probe vehicles. The major reason for choosing 
downtown regions is that we need to know the original 
traffic condition matrix as the ground truth. In reality, it 

is very difficult to find a fully integral matrix without 
vacancies. For this reason, it is better to find a matrix 
that is as integral as possible. When performing ex-
periments, we randomly discard some elements to form 
measurement matrices. Then, these estimates are com-
pared with the original matrices and estimate errors 
can be computed since the original matrices have only a 
few unavailable elements. Note that the calculation of 
estimate error does not include those elements that are 
unavailable in the original matrices.  

4.2 Compared Algorithms 
We compare our algorithm with three other algorithms. 

4.2.1 Naïve KNN  
K-Nearest Neighbors (KNN) is a simple algorithm but 
often used to solve many machine learning problems 
including recovery of missing values. The naïve KNN 
interpolates missing values by taking the average of its 
nearest  neighbors in the measurement matrix. 

4.2.2 Correlation-based KNN  
The correlation-based KNN is more sophisticated 
compared with the naïve one. It calculates the average 
by using the  neighbors from its immediate rows or 
columns. In the following, we use rows as example. The 
key idea is that for average computation, the candidate 
value is weighed by the coefficient of the current row 
and the candidate row.  

, , ,1, 2
| | / | |.

i k i k i kt i i
w C C  (20)

Thus, the estimate for a missing element is computed 
by, 

, , ,1, 2
.

i j k j i kk i i
x x w  (21)

where  is the correlation coefficient of row  and .  

4.2.3 Multi-channel Singular Spectrum Analysis (MSSA) 
MSSA is often used to solve missing data problems, e.g., 

Algorithm 2: Finding optimal parameters. 
Input: 

: lower bound and upper bound of   
: lower bound and upper bound of  

: measurement matrix 
Algorithm 1 

Output: 
Optimal  and  

1. (population) nitialize with random numbers uni-
formly distributed within ] and [  

2. while (!stall(fitness)) do 
3.     
4.      
5.      
6.      
7.  
8.  

Figure 10. The Pseudo code of Algorithm 2. 
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geographic data and meteorological data. It is a data 
adaptive and nonparametric method based on the em-
bedded lag-covariance matrix. We adopt an iterative 
procedure proposed in [40] that utilizes the internal 
periodicity of traffic conditions. 

4.3 Impact of Integrity 
The four algorithms are compared in terms of estimate 
error when the integrity of the traffic matrix is varied. 
In Naïve KNN,  is set to 4. In the correlative KNN,  
is also set to 4. And in MSSA, the parameter  is set to 
24 as suggested by [40]. According to the result of Al-
gorithm 2, we set  and  in Algorithm 1 to 2 and 100, 
respectively.  

In Figure 11, the performance of the four algorithms 
in terms of estimate error with Shanghai dataset is 
shown. Three time granularities are used, i.e., 15 min, 
30 min and 60 min. We can see that our algorithm per-
forms the best among all the algorithms under every 
time granularity. Naïve KNN performs the worst. Cor-
relation-based KNN and MSSA are better than naïve 
KNN, but worse than our algorithm. The two algo-
rithms, correlation-based KNN and MSSA, produce 
almost similar performance of estimate error.  

We can also find that when the integrity of the traffic 
condition matrix decreases, our algorithm steadily 
produces low estimate errors. That is, the performance 
of our algorithm is relatively insensitive to the integrity 
of measurement matrices. Even when the integrity is as 
low as 20%, the estimate error is no more than 20% 
when the time granularity is 60 minutes. This shows 
that our algorithm can reliably recover the missing el-
ements when just a few elements are available. In con-
trast, the rest algorithms including naïve KNN, correla-

tion-based KNN and MSSA have worse performance 
when the integrity becomes poorer. The reason is that 
our compressive sensing based algorithm can effec-
tively capture the internal structures that exist in the 
dataset even just a few data points are used, while the 
rest algorithms fail to achieve this.  

From Figure 11, we can also see that the estimate er-
ror becomes higher when the time granularity is small-
er for all algorithms. It is mainly due to the fact that the 
hidden structure feature of the traffic condition matrix 
becomes weaker because of average speeds in the traf-
fic condition matrix would experience more variations 
over time when the time window is smaller. Our ap-
proach accordingly becomes less capable to accurately 
recover missing values. 

We observe that as the integrity increases from 0.05 
to 0.95, the estimate error achieved by our compressive 
based algorithm first quickly decreases before the in-
tegrity is 40% and then further becomes smaller but the 
speed of decrease is very small. This shows that the 
compressive sensing based algorithm has the strength 
that using only a small subset of the complete set of 
traffic conditions it is able to capture the majority in-
formation of the complete data set.  

However, there consistently remains an estimate er-
ror of around 20% even if the integrity is as high as 95%. 
There are two main reasons. First, in the real world a 
traffic condition may contain unpredictable random-
ness which are unable to be captured by other traffic 
conditions. Second, there is limitation with our com-
pressive based approach which mainly focuses on line-
ar structures of a traffic condition matrix while a real 
traffic condition matrix has other kinds of structures.  

In Figure 12, the performance of the algorithms with 

 
(a) Time gran. = 15 min (b) Time gran. = 30 min (c) Time gran. = 60 min 

Figure 11. Estimate error vs. integrity for different time granularities (with Shanghai Dataset, # of road segments = 221, # of probe ve-
hicles =2000, time length = one week) 

 
(a) Time gran. = 15 min (b) Time gran. = 30 min (c) Time gran. = 60 min 

Figure 12. Estimate error vs. integrity for different time granularities (with Shenzhen Dataset, # of road segments = 198, # of probe ve-
hicles =8,000, time length = one week)  
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Shenzhen dataset is shown. Since MSSA runs very 
slowly, we do not include MSSA in this experiment. We 
can find similar results as in Figure 11. By comparing 
the impact of the two datasets, we find that the estimate 
error with Shenzhen dataset in the same configuration 
is higher than that of Shanghai. This is because the 
probe taxies in Shanghai is more densely distributed 
over the subnetwork under investigation.  

We further show the distribution of individual errors 
in Figure 13 and Figure 14. Since absolute errors may 
differ dramatically, we instead study relative errors. A 
relative error of an estimated element is defined as 

. The experiments are conducted with in-
tegrity of 20%. In Figure 13, we can find that 80% of 
estimated elements have a relative error of smaller than 
0.25 when the time granularity is 60 minutes. Even 
when the time granularity is 15 minutes, the relative 
error for nearly 80% of estimated elements is less than 
0.38. In Figure 14 we can find consistent results.  

4.4 Impact of Rank Bound and Tradeoff Coefficient 
As mentioned before, Algorithm 1 has two important 
parameters, i.e., rank bound and tradeoff coefficient. 
The parameters impact the performance of the algo-
rithm. We have proposed the genetic-based algorithm 
for finding the optimal parameters. In the following, we 
conduct experiments to study the impact of these pa-
rameters and show that it is important to design the 
algorithm for finding the optimal parameters. The ex-
periments are conducted with Shanghai dataset.  

First, we study the impact of rank bound . In Figure 
15, the error rates against different rank bounds are 
plotted. In this experiment, the time granularity is 30 
minutes and  is set to one. We find that the estimate 
error is lowest when the rank bound is two. The main 
reason is that when the rank of  is low, the estimate 
matrix embodies the major trend of variation of the 
original matrix. When the rank of  grows, the esti-
mate matrix tries to describe more information but is 
often misled by measurement errors. This increases the 
estimate error. 

We also study the impact of tradeoff coefficient . 
For ease of studying its impact, we set rank bound  to 
32. In Figure 16, estimate errors against different 
tradeoff coefficients are shown. We find that the esti-

mate error changes significantly when the tradeoff co-
efficient changes from 0.001 to 2,000. The optimal coef-
ficient is around 100 when the rank bound is 32. Ac-
cording to (16), a larger  puts more weight to rank 
minimization and a smaller  more emphasizes meas-
urement fitness. A good tradeoff coefficient should 
strike a balance between rank minimization and meas-
urement fitness. 

4.5 Impact of Traffic Matrix Selection 
We next explore the impact of traffic matrix formation 
on the estimation quality of a given road segment. Ac-
cording to the definition of traffic condition matrix in 
(3), a column in a traffic matrix represents a road seg-
ment, and a row represents a time instance. For traffic 
estimation, we can form different traffic matrices by 
selecting different road segments. For this study, we 
focus on the estimation quality of a given road segment, 
denoted as , when we select different sets of road 
segments for constructing traffic matrices.  

We construct five different traffic matrices by select-
ing five sets of road segments as follows. Note that each 
set contains . Set 1 has six other road segments all 
directly connected with . Set 2 consists of 18 road 
segments within two blocks but excluding those di-
rectly connecting ones. Set 3 has forty five randomly 
selected road segments from the rest set of road seg-
ments excluding Set 2 and Set 3. Set 4 contains six road 
segments randomly selected from Set 2. Set 5 contains 
six road segments randomly selected from Set 3.  

Estimate errors achieved by different algorithms with 
the five different traffic matrices with 20% integrity and 
40% integrity are shown in Figure 17 and in Figure 18, 
respectively. We find that when the number of road 
segments in the matrix is small and fixed, there is no 
significant difference when we use different road seg-
ments to construct the traffic matrix. In addition, the 
performance gain of our algorithm over other algo-
rithms are not significant.  

However, as the number of road segments increases, 
e.g., from Set 1 to Set 2 and Set 3, the performance ad-
vantage of our algorithm becomes more evident. In the 
case of Set 3 which contains forty five road segments, 
the estimate error achieved by our algorithm is signifi-
cantly better than the other competing algorithms.  

   
Figure 13. CDFs of relative errors with dif-
ferent time granularities (Integrity =20%, 
Shanghai dataset).  

Figure 14. CDFs of relative errors with 
different time granularities (Integrity 
=20%, Shenzhen dataset).  

Figure 15. Estimate error against rank 
bound  ( =1, gran.=30min, Shanghai 
dataset). 
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Thus, our proposed algorithm prefers to constructing 
larger matrices with more road segments, which is 
beneficial to making use of more evident hidden struc-
tures within traffic condition matrices. 

4.6 Run Times 
TABLE 2: 

RUN TIMES OF DIFFERENT ALGORITHMS 

Algorithms 
Time Granularity 

15 Min 30 Min 60 Min 
Naïve KNN 2.20e-2 1.56e-2 6.20e-3 
Correlation KNN 3.10e-2 2.18e-2 1.60e-2 
Compressive 8.27e-1 4.99e-1 2.97e-1 
MSSA 5.32e+3 3.61e+3 2.59e+3 

 
We finally investigate the time efficiency of different 

algorithms. Experiments are run on a desktop comput-
er with Windows XP, Core i7 870 processor of 8 cores, 
4GB memory, and 500GB disk. All algorithms are im-
plemented with MatLab, and the version of MatLab is 
v7.4 (R2007a). The Shanghai dataset is used and the 
matrix of traffic conditions is for 221 road segments 
over a time length of one week.  

The run times of different algorithms are shown in 
Table 2. We find that MSSA requires very long run 
times, and other algorithms are time efficient. When the 
time granularity is 15 minutes, it costs MSSA 5.32  
(about 1.48 hours) to finish, our proposed algorithm 
only 0.827 second, and Naïve KNN and Correlation 
based KNN less than 0.1 second.  

In summary, although Naïve KNN and Correlation 
based KNN are also time-efficient algorithms, they 
provide poor performance of estimate error. Our pro-
posed algorithm requires short run time but produces 
good performance of estimate error. MSSA is not time 
efficient and may not be practical when the number of 
road segments is large and the time of interest is long.  

5 RELATED WORK 
In this section we review related work and outline dif-
ferences of our work from existing work.  

5.1 Traditional Traffic Monitoring 
Close-circuit cameras and vehicle loop detectors are 

two traditional methods for estimating traffic condi-
tions. By installing cameras in road intersections, we 
can analyze the video screen manually, or by image 
processing [7], to estimate traffic conditions at the road 
segments where the cameras are installed. It suffers the 
coverage problem and is limited by the complexity of 
image processing algorithms.  

A more common method is to deploy inductive cir-
cuits under the road surface [11]. When a vehicle passes 
above, it produces a signal. According to the time in-
terval of two consecutive signals, we can calculate the 
speed of this vehicle and evaluate the number of vehi-
cles on the road. It suffers the limited coverage and 
high cost problem as well. 

Many traffic estimation methods have been devel-
oped, which rely on density based traffic models, e.g., 
Lighthill-Whitham-Richards (LWR) partial differential 
equation (PDE), and Cell Transmission Model (CTM) in 
the trans-portation literature) [33]. Such models work 
with traditional traffic sensors which measure vehicle 
flows and occupancies from which vehicle densities can 
be computed.  

In response to the growing availability of probe data 
from vehicles and mobile smartphones, some research-
ers have proposed to use the flow speed of a road seg-
ment as traffic state [6, 33]. Our work adopts the same 
idea of using the flow speed of a road segment to indi-
cate the traffic condition of a road segment.  

5.2 Traffic Monitoring with Probe Vehicles or Mo-
bile Phones 
With the prevalence of GPS receivers embedded in ve-
hicles and smartphones, there has been increasing in-
terest in using their location updates or trajectories for 
monitoring traffic of road networks [16].  

Ferman et al. [13] discuss the architecture of probe 
vehicle systems and develop a simple analyti-
cal/statistical model. They figure out that 3% penetrate 
is needed on highway and over 5% penetrate is re-
quired on surface roads. However, they do not offer 
any method for dealing with the issue of insufficient 
samples.  

Yoon et al [34] focus on how to figure out the street 
traffic states on a given road segment based on probe 
vehicle’s trace data. They drive a car with a GPS re-

 
Figure 16. Estimate error against 
tradeoff coefficient  ( =32, gran. = 
30min, Shanghai dataset).  

Figure 17. Estimate errors achieved by 
different matrices formed by different road 
segments (time gran. =30 min, integrity = 
20%, Shanghai dataset). 

Figure 18. Estimate errors achieved by 
different matrices formed by different road 
segments (time gran. =30 min, integrity = 
40%, Shanghai dataset). 
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ceiver in a given route in Ann Arbor and collect GPS 
information every 4 to 10 seconds. They classify traffic 
states according to vehicle’s spatial average speed and 
temporal average speed. Such a method, however, re-
quires abundant data and each road segment is ana-
lyzed independently. They also show that the driving 
speed of one road segment exhibits some regular pat-
terns.  

In [35], Yuan et al. also employ the idea of under-
standing road traffic with GPS-equipped taxis. They 
build a Cloud for incorporating a number of factors 
such as day of week, time of day and weather. With 
such information, the Cloud provides a driving direc-
tion service.  

In [22], a fusion based method is proposed to com-
bine sensing data provided by loop detectors and probe 
vehicles for traffic monitoring. This method considers 
that each single source is inaccurate and the better way 
is to combine multiple sources. This method assumes 
that for a given road segment sensing data from loop 
detector and from probe vehicles are both available, 
which may not be true in a realistic setting.  

Mobile Millennium [1] is a project that includes a pi-
lot traffic-monitoring system that uses GPS receivers in 
cellular phones to gather traffic information, process it, 
and distribute it back to the phones in real time.  

The performance of a system for measuring traffic 
speeds and travel times using information from mobile 
phones is studied in [3]. Through comparison with dual 
magnetic loop detectors, it is shown that the mobile 
phone based system for traffic monitoring can be useful 
in real world applications.  

Mohan et al. focus on the monitoring of road traffic 
conditions using smartphones [29]. They leverage em-
bedded sensors on smartphones, such as accelerator, 
microphone and GPS sensors. A system called Nericell 
is developed to perform rich sensing by piggybacking 
on smartphones.  

5.3 Sparse Data for Traffic Estimation 
Some studies have been devoted to traffic estimation 
using sparse probe data.  

In [18], Herring et al. propose a probabilistic model-
ing framework for estimating arterial travel time dis-
tribution using sparsely observed probe vehicles. They 
consider that the traffic state of a road segment is in-
visible and it impacts the vehicle speed traveling on 
this road segment. Thus, they model the evolution of 
traffic states as a coupled Hidden Markov Model 
(CHMM), in which traffic states of nearby road seg-
ments are correlated and evolve over time in a Markov 
manner. After training the model, it can be used to 
compute the average travel time for each link. The main 
difference of our work from this work is that the 
CHMM must be trained with a sufficiently dataset but 
there is no training needed for our approach. In addi-
tion, their approach assumes that traffic evolution of a 
road network is stationary but in the real word it may 

not true.  
In [38], the authors study the problem that travel 

times recorded by probe vehicles are for partial links or 
for a partial route travel. They try to split travel times 
between two consecutive timestamps to individual 
links. They do not specifically consider the problem 
that some links may be covered by no probe vehicles in 
some certain durations.  

In [5], Bejan et al. study the feasibility of using public 
buses to estimate journey times experienced by road 
users. They analyzed sparse probe data collected from a 
fleet of over 100 buses. A probe data report of the bus 
probe data contains only location and timestamp. The 
authors propose a method of computing the speed of a 
bus at a given location. They first interpolate the loca-
tions with a spline technique and then compute the 
speed by taking the derivative.  

Based on the previous work in [5], A. Bejan and R. 
Gibbens [6] propose to use bus speeds recovered by 
sparse bus probe data to indicate the traffic condition of 
a link. They explain why bus speeds can be used as an 
indicator of traffic condition and show how bus speeds 
can be aggregated to obtain the velocity fields of a road 
network. There is no validation, however, on the accu-
racy of the velocity fields constructed by using bus 
probe data.  

The studies in [5] and [6] make use of sparse bus 
probe data. However, they do not solve the problem of 
recovering velocity fields for those links that are not 
covered by any buses.  

5.4 Mobile Sensing with Vehicles 
In addition to traffic monitoring, vehicles as powerful 
mobile sensors can be used in a variety of mobile sens-
ing applications [25]. A good survey on urban vehicular 
sensing platforms is offered in [25].  

It is reported [27] that vehicular sensor networks 
have emerged as a new paradigm for proactive urban 
monitoring. A vehicular sensor can sense events, pro-
cess data and deliver it for further analysis. MobEye [26] 
is a protocol useful for vehicular urban sensing. It op-
portunistically diffuses sensed data summaries among 
mobile vehicles and to create index for querying moni-
toring data.  

In [8, 21], a data management system called CarTel is 
proposed for for querying and collecting data from 
mobile vehicles. It enables application development 
with data collected from automobiles.  

Balan et al. [2] propose to provide a real-time trip in-
formation service for a large taxi fleet. They provide a 
method for deriving the expected fare and trip duration 
of a taxi ride based on ride history from a fleet of more 
than 15,000 taxis.  

Thiagarajan et al. propose VTrack [32] for estimating 
road traffic delay. It is reported that GPS sensors are 
more energy-hungry and may not work in an urban 
environment. Thus, VTrack uses less accurate sensors, 
such as WiFi for localization and delay estimation. It 
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users a hidden Markov model based map matching 
scheme and travel time estimation method.  

T-Drive [36] mines smart driving directions from 
historical GPS trajectories of a large number of taxis. It 
then recommends smart driving directions to end us-
ers.  

HERO [39] is a system for tracking moving automo-
biles in an urban area. To avoid costly network-wide 
location update, it builds a hierarchy with which an 
automobile only updates its location to those nodes in a 
a restricted area. It is shown that locating any automo-
bile can be achieved within a bounded delay.  

5.5 Privacy in Monitoring with Probe Vehicles 
Privacy issues arise when a probe vehicle or mobile 
device share its real-time location. Such issues have 
been be aware and some solutions have been available.  

In [20], Hoh et al. noticed the tension between data 
integrity and privacy. They design an architecture for 
assigning the authentication and filtering functions and 
the actual data analysis to separate entities. According 
to this architecture one entity accesses the vehicle’s 
identity but cannot know precise position and speed 
information. The other entity knows position and speed 
but have no knowledge of identity. Such an architec-
tural design alleviates the concern of privacy in the 
traffic monitoring system with probe vehicles. 

In [19], the concept of virtual trip lines is proposed, 
which is a line in geographic space that, when crossed, 
triggers a client’s location update to the traffic moni-
toring server. The line controls disclosure of location 
updates by sampling in space rather than sampling in 
time. By careful selection of trip lines, sensitive loca-
tions can be avoided for a vehicle to send location up-
dates and thus privacy can be preserved. 

Our work does not address the privacy issue and can 
benefit from the existing solutions for protecting pri-
vacy of individual vehicles.  

5.6 Summary 
It has been recognized that probe vehicles can be em-
ployed to understand road traffic conditions. Several 
research efforts have been made for estimating road 
traffic conditions with driving speeds gathered from 
mobile vehicles. SEER [40] is close to our work. It re-
covers missing road traffic conditions by using Multi-
ple Singular Spectrum Analysis (MSSA). This method 
cannot fully utilize the hidden structure of traffic data. 
Our work is evaluated against MSSA and results shown 
that our algorithm outperforms MSSA over a wide 
range of configurations. The preliminary result of our 
work has been reported in [28].  

6 CONCLUSION AND FUTURE WORK 
This paper has presented our approach to large-scale 
traffic estimation in an urban environment with probe 
vehicles. With principal component analysis, we have 
analyzed a large dataset of real probe data collected 

from a fleet of 4,000 taxis in Shanghai, China, and dis-
cover that road traffic condition matrices often embody 
hidden structures or redundancy. Inspired by this ob-
servation, we have designed the algorithm based on 
compressive sensing, which effectively exploits the in-
ternal structures of traffic condition matrices. Experi-
ments with the large dataset of probe data have verified 
that the algorithm significantly outperforms other 
competing algorithms, including two variations of 
KNN and MSSA. More surprisingly, even when 80% of 
original data are missing, the algorithm can still achieve 
an estimate error of as low as 20%. The results suggest 
that the traffic estimation in a large-scale metropolis 
like Shanghai when the number of probe vehicles is not 
large can still be effective. 

Future work will be carried along the following di-
rections. First, the current work constructs the traffic 
condition matrix for given locations and given times. 
However, it is possible to construct different matrices 
for estimating traffic conditions at different locations 
or/and times. It is an interesting and important prob-
lem to find the best way for constructing adaptive 
measurement matrices. Second, the current form of the 
proposed algorithm deals with offline probe data. The 
algorithm can be further extended to support pro-
cessing of online streaming probe data. Finally, we will 
study the issue associated with inherent measurement 
errors by probe vehicles. For example, traffic signals 
influence the probe speed every few minutes, which 
makes it difficult to distinguish between a probe vehi-
cle that is stopped at a traffic light on an uncongested 
street, and a probe vehicle that is stopped in a traffic 
jam. In addition, we will also study the impact of the 
sampling process of probe vehicles. It is apparent that 
the quality of traffic state monitoring is better if more 
probe vehicles are employed.  
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