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a b s t r a c t

With the help of various positioning tools, individuals’ mobility behaviors are being con-
tinuously captured from mobile phones, wireless networking devices and GPS appliances.
These mobility data serve as an important foundation for understanding individuals’ mo-
bility behaviors. For instance, recent studies show that, despite the dissimilarity in the
mobility areas covered by individuals, there is high regularity in the humanmobility behav-
iors, suggesting thatmost individuals follow a simple and reproducible pattern. This survey
paper reviews relevant results on uncovering mobility patterns from GPS datasets. Spe-
cially, it covers the results about inferring locations of significance for prediction of future
moves, detecting modes of transport, mining trajectory patterns and recognizing location-
based activities. The survey provides a general perspective for studies on the issues of in-
dividuals’ mobility by reviewing the methods and algorithms in detail and comparing the
existing results on the same issues. Several new and emergent issues concerning individ-
uals’ mobility are proposed for further research.

© 2013 Elsevier B.V. All rights reserved.
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Table 1
A comparison of different types of data repositories for the study of individuals’ mobility. Velocity, pause time,
inter-contact time (ict for short) are the basic features needed in describing individuals’ mobility. Resolution
indicates the degree of spatial accuracy of the data. Scale indicates the area covered by an individual’s data.
GSM cell-tower data contain the ict information, whereas both the wireless network traces and GPS data need
manual labels to indicate the ict.

Data type GSM cell-tower data Wireless network traces GPS data
Resolution km m m
Scale Metropolitan area Campus/work place Global
Velocity No No Yes
Pause time Approximate Approximate Exact
Ict Exact Labels needed Labels needed
Path info Rough Rough Exact

1. Introduction

Mining individuals’ mobility patterns is an emergent research area. Owing to the prevalence of mobile phone, a wide
variety of mobility-related data are now being captured, including, e.g., the usage of WiFi, and communications between
individuals via sending messages or making phone calls. The availability of such data on personal devices will inevitably
engender the study of individuals’ mobility patterns at an unprecedented scale both in terms of the areas covered by the
trajectories and also the number of individuals involved in the study. Many interesting results have been obtained [1–4].
For instance, despite great dissimilarities in individuals’ mobility areas, ranging from a few square kilometers to more
than a few thousands square kilometers, individuals’ mobility is found to be highly regular [1]. Most individuals return
to a handful of locations and share a rather universal probability density function for places visited [2]. After removing
individuals’ idiosyncrasies, the rules that govern the individuals in exploring new locations or returning to the previously
visited locations are found to be similar [3]. Also, members of a same social group, such as researchers from the same labs,
present similar mobility behaviors [4].

The study on mining individuals’ mobility patterns have found applications in a wide range of researches, such as per-
sonal positioning [5,6], complex system [1,7], computational sociology [4,8], wireless network analysis [9–11], etc. Both
individuals and the society as a whole can benefit from the study of individuals’ mobility. For instance, understanding indi-
viduals’mobility can help recognize regular activities or abnormal events [12–15], predict futuremovements or destinations
[2,5,16,17], identify similarities among individuals [18,19]. The study may also be applied in traffic forecast [20], city plan-
ning [21,22], mobile virus control [7], epidemic prevention [23–25], evaluating mobile network protocols [9–11], logistics
management [26], energy consumption and carbon footprint [27,28].

Due to the coarse description of individuals’ locations provided by the GSM cell-tower data, however, many existing
studies of mobility patterns, are incomplete and less than convincing. In GSM cell-tower data, a location is indicated by the
cell tower that provides the connecting services. Hence the resolution for the location is constrained by the service area of a
cell tower, whose size is in the order of hundreds of square meters to several square kilometers. The paths, often indicated
by a series of discontinuous sudden jumps, are hardly observable in fine details between the destinations.

Besides the GSM cell-tower data [29], some other data repositories, such as wireless network traces [30–32] and GPS
data [33,34], have recently become available.1 A comparison among the data repositories in presenting the basic mobility
features, is summarized in Table 1. Specifically, GPS data allow to track the movements of individuals in latitude and
longitude along with timestamp. GSM cell-tower data are constrained by the service area of cell towers, whereas wireless
network is mostly available within even smaller regions, such as campuses or work places, although their accessibility is
being improved gradually. By comparison, GPS devices are able to provide positioning data globally. GPS data, however,
suffer from three major limitations, (1) GPS signals are usually blocked indoor or underground places, (2) GPS devices may
get interferences near tall buildings, and (3) continuously collecting GPS data may consume devices’ energy quickly. These
limitations have prevented collection of continuous high quality GPS records over long durations.

This survey will focus on the mobility studies based on high resolution positioning data, GPS data in particular, with a
target on researches that aim to uncover the patterns in individuals’ movements, e.g., [37–39]. The study of individuals’
mobility may be broadly classified into two subareas, (1) mining mobility patterns, and (2) constructing mobility models.
Typically, the following mobility patterns are of great interest: locations of significance, modes of transport, trajectory
patterns and location-based activities. The mobility models of great interest are the ones that emphasize on the statistical
patterns of the individuals learned from trajectories [3,9–11], or i.e., the trace-based mobility models. Since there is an
excellent survey on this topic [40], we will not include this topic in this paper.

The remainder of this paper is organized as follows. Section 2 to Section 5 focus on issues and results in mining various
mobility patterns. Section 6 highlights a few new and emergent research issues. In Section 7, we briefly conclude this review.

1 A spatial–temporal datasets generator is given in [35]. Since this survey targets on mining of real-world mobility patterns, the issue of the generation
of synthetic dataset will not be addressed here. Nevertheless, one of the studies based on synthetic data is included in Section 4.1 [36].
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Fig. 1. (a) One individual’s GPS traces mapped on Google Earth. (b) The red stars are the detected significant locations for this individual.
Source: These two figures are from [6].

2. Locations inference and movement prediction

In the context of mobility studies, significant locations are the places where an individual or a group visits frequently or
dwells for a long time. These locations may be different from locations that have geographic or social meanings, such as the
parks, coffee shops, etc. Fig. 1(b) highlights a few significant locations learned from one individual’s trajectory. Some of the
locations carry geographic meanings, such as office buildings, but others may be merely the intersection points on the road,
where the individuals may stay for a while. Another example may be given by an individual who regularly parks his car in
a specific parking lot. Thus a large number of samples may be collected around this area.

In a typical GPS dataset, a trace is a time-stamped sequence of pairs of latitude and longitude. Because of measurement
errors, the GPS coordinates of the same location may vary from time to time. Inferring the significant locations from GPS
traces is the process of mapping the raw readings to discrete location symbols. In [41], Andrienko et al. summarize four
steps for extracting the significant places frommobility data. Firstly, a subset of points indicating certain events, e.g., traffic
jam, is extracted from raw data. Secondly, meaningful locations are generated by clustering the points based on the spa-
tial–temporal attributes. The last two steps analyze the aggregated trajectories that fall with the clusters. In the following,
we discuss a few recent papers according to the spatial–temporal clustering methods they used, e.g., the density-based
clustering algorithm or its variants [16,42,43], or time-based clustering algorithms [44].

Ashbrook et al. [16] propose a two-step method to infer the significant locations, and further construct a Markov model
to predict future locations. In the first step, the significant places are inferred by the points where the GPS devices lose the
signals from the satellites. These places are clustered into locations using a variant of the K -Means algorithm in the second
step. In the clustering procedure, the clusters are initially centered at K chosen points with a given radius, and iteratively
move to a denser area, until no further changes arise in the clusters. When given a large radius, the significant locations may
correspond to the city level, or the campus-level when given a small radius. A second-order Markov model is constructed
based on the transition probabilities between locations. According to the high relative frequency of movement patterns
between locations, the future location is predicted. Since the loss of GPS signals serves as themain clue to identify significant
locations, mostly buildings are found. Other types of significant locations where the signals are continuously collected, such
as certain open-air canteens, may hardly be detected.

Zhou et al. [42] propose a density- and join-based clustering algorithm called DJ-Cluster to infer significant locations.
The dense points are those with at least certain number of other points lying within a distance of their neighborhood. The
clusters are formed from a set of dense points, which are density-joinablewhen the neighborhood of the dense points share
a common point. A two-step preprocessing procedure is introduced to improve the performance of the algorithm, which
eliminates a GPS reading if either its speed is greater than zero or if it is within a small distance of the preceding reading.
The experimental results indicate great improvements in terms of both recall and precision over those obtained from the
K -Means algorithm. Moreover, DJ-Cluster overcomes the drawbacks of DBSCAN2 [45] by reducing the memory and time
requirements. However, someuseful information in the original datamay be lost during the preprocessing step. For instance,
when a stay is incurred at a location and a large amount of readings arising from the adjacent locations are generated, then
removing the series of reading within a few meters may conceal the fact that a stay is incurred.

Cao et al. propose a semantics-enhanced clustering algorithm (SEM-CLS) to extract semantically meaningful locations
and further rank the locations through a unified probabilistic model [43]. SEM-CLS splits the locations of different semantics
in a cluster and merges the locations sharing the same semantics from adjacent clusters, which enhanced the results

2 In DBSCAN, it clusters the points that have a high density within a given area.
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from OPTICS3 [46] and K -Means. A two-layered graph is constructed to model the trajectory, and each layer represents
the relations between the locations and the individuals as well as the relations among the locations. When ranking the
significance of the locations, a unified probabilistic model, based on random walks with the Markov Chains built from
each layer, is proposed along with an extended model, which is able to incorporate stay durations and distances between
locations. Locations of various semantics can be extracted more accurately than those by using a single factor, such as rank-
by-visit, rank-by-duration, Hyperlink-Induced Topic Search (HITS) [47], etc. Since the model is constructed based on the
trajectory of a group of individuals, the detected locations are semantically meaningful for a group and individuals’ bias is
removed.

Hariharan et al. [48] construct a probabilistic model to condense, understand and predict individual’s location based on
a GPS log. A stay is a single instance for an individual to have spent sufficiently long duration in one place. A destination is
generated from merging the stays according to the geographic scale of interest. Based on the time-dependent probability
involved with the destinations, such as the probability of an individual starting from a destination at a given time interval,
a first-order Hidden Markov Model is constructed to represent the probability for a transition between two destinations
at the given time interval. After estimating the parameters through either a Markovian or non-Markovian solution, the
relative likelihood of a new location is estimated from this model. Based on the data of two individuals over one year, the
experimental results show that a non-Markovian approach is suitable for identifying typical activity patterns, while the
Markovian approach is better in revealing atypical behaviors. However, whether the first-order Markov model is able to
capture all of the individuals’ activity patterns has not been validated.

Krumm et al. [49] propose a closed-world model and an open-world model to predict individual’s future locations.
A closed-world model merely considers the probability of where a driver has been to, and the destination refers to a
rectangular region of the map. The open-world model enriches the closed-world model by introducing (1) the probability
of a certain type of area being a destination, (2) the probability of each destination according to the GPS data, and (3) the
driving efficiency and trip time. Both closed-world model and open-world model are trained based on the historical data,
but a complete data model, sharing the theory with the open-world model, is trained by the data both before and after the
test day. The experimental results show that in both the complete data model and the open-world model, the prediction
errors decrease when the trip fraction increases, whereas the prediction errors merely fluctuate a little bit in the simple
closed-world model. When associating the locations to a grid map, some large places may be separated and some irrelevant
places are included, therefore the probability of each small grid of being a destination may not be directly relevant.

We have reviewed the approaches for the inference of significant locations and various probabilistic models along with
efficient algorithms proposed to predict individual’s next move with varying levels of success. Yet little has been discussed
whether the predicting accuracy is already close to the limit. In the following paragraphs, we review some theoretical
results on the predictability of individuals’ mobility sequences [1,50,51]. Song et al. [1] define predictability as themaximum
probability that any algorithm may at best achieve in predicting the next locations based on historical records. Given an
individual’s mobility sequence, two kinds of information are extracted, (1) the number of distinct locations N , and (2) the
entropy rate Ĥn of the sequence which measures its complexity. The first information can be easily calculated from the
sequence, while the entropy rate Ĥn can be estimated through the Lempel–Ziv algorithm [52]

Ĥn =


1
n

n
i=2

Li
log i

−1

(1)

where Li is the length of the shortest substring starting at index i that has not appeared before.
The predictability Πmax derived from Fano’s Inequality, is of the form,

Ĥn = −[Π log2 Π + (1 − Πmax) log2(1 − Πmax)] + (1 − Πmax) log2(N − 1). (2)

Lin et al. [51] analyze the predictability of individuals’ mobility based on 40 individuals’ GPS records, each lasted for
16 weeks. Specifically, a location is defined as a grid cell in a grid map. A grid cell is a rectangular region characterized
by the origin and spatial scale s. The origin is a given point of reference. The scale s is a numeric value used to specify the
size of the grid cell, where adjacent grid lines differ by 0.001° × s in latitude or longitude. The grid map is a collection of
disjoint grid cells that collectively cover the mobility area in a GPS dataset. After specifying the size of each location and
the origin of the map, an individual’s trajectory is encoded into a location string. The predictability is inferred based on
the analysis of the entropy and number of distinct locations discussed before. When the size of a location is about 3 km2,
or that of a village, the predictability is centered around 93%, which concurs with the finding based on GSM cell-tower
data with relatively low spatial resolution. When shrinking the size of the locations to roughly that of a large building, the
predictability is still around 90%. When varying the scale of the grid and hence the size of locations over a wide range,
an invariance between the predictability and the size of the locations is observed. This property suggests that a trade-off
between the predicting accuracy and spatial resolution of the locations is unavoidable, which has implications to algorithms

3 It adopts the theory in DBSCAN, but the difference is that in OPTICS the clusters of points are not generated, whereas all the points are sorted according
to the defined radius, within which a high density is achieved.
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Fig. 2. (a) The cumulative speed distributions are differentiable among different modes of transport, especially the high speed distribution indicated on
the right-hand side of the red vertical line. (b) The difference between cumulative speed distributions estimated empirically or from a kernel method.
Source: These two figures are from [57].

for predicting the mobility of individuals. Moreover, the predictability is found to be independent of the mobility area
covered by the individuals. Since the other two results [1,50] on predictability are based on other types of data rather than
GPS data, we do not discuss them here.

Significant locations can forward the study of individuals’mobility on the remaining issues. In particular, typical locations,
such as bus stop and parking lot, are the indications of changing modes of transport as well as activities. The locations are
useful in representing the path patterns graphically.

3. Modes of transport

Mode of transport is another fundamental property of individuals’ mobility. Individuals may apply a combination of
modes of transport, such as walk, bike, bus and car, etc., in the daily activities. Basically, eachmode of transport may present
different speed values, but recognizing a mode is not easy, especially when multiple modes are utilized during a trip or
when traffic congestion is involved. Besides speed values, some additional features, such as the presence of a car park or bus
stop, heading change rate, stop rate, etc., are found to be effective in detecting modes of transport based on supervised
methods [53–56], such as decision tree, support vector machine, Markov Models, etc. Various supervised methods are
presented by Zheng et al. [53–55] and Reddy et al. [56]. Lin et al. [57] demonstrate that the high speed distributions are
apparently differentiable among different modes, thus an unsupervised method is proposed.

Among all the approaches [53–55], the preprocessing step is similar, which divides the GPS log into segments based on
criteria such as changing points, uniformity in duration and distance. The changing points are the locations where changes
of transportation modes from walking to non-walking modes or vice versa are likely to have occurred. The differences
between these approaches lie in the various features selected and the post-processing step applied. Basic features such
as the distance covered, mean velocity, etc., are used in [53], while three additional features, namely, heading change rate,
stop rate and velocity change rate, are further introduced in [54,55]. Several instance-based classifiers are developed to
infer the transportation modes based on the corresponding features through standard training and predicting steps. In the
post-processing step, the result is adjusted according to the transition probability between modes [53], and the probability
between locations of each mode is used in [54,55]. Experimental results indicate that changing points based segmentation
method combined with a Decision Tree algorithm shows the highest inference accuracy. Since manually labeled data are
used in both the training phase and the post-processing phase, these methods suffer from laborious labeling as well as
tedious training and predicting process.

Reddy et al. [56] detect themodes of transport based on the information from various sensors. Features such as themean,
variance, energy, and the DFT energy coefficients between 1 and 10 Hz, are calculated based on the data obtained from
accelerometer, GPS, WiFi, and GSM. In addition to typical instance classifiers, the authors evaluated continuous Hidden
Markov Model and Decision Tree combined with a Discrete Hidden Markov Model (DHMM). Among all these classifiers,
Decision Tree combined with DHMM achieves the highest accuracy (about 93.6%) to date for detecting the modes of
transport.

Different from the supervised methods mentioned before, Lin et al. propose an unsupervised method to infer modes of
transport from unlabeled GPS logs [57]. The underlying assumptions are that, (1) the speed distributions from the segments
of the samemode are similar, and (2) the speeddistributions amongdifferentmodes are differentiable, especially for the high
speed distributions (as shown in Fig. 2(a)). Initially a GPS log is divided into segments that are likely to have been recorded
under a single mode of transport. Given a segment Si and its speed values segment SVi = {vi1 , vi2 , . . . , vi1+|Si|}, each speed
value vj is assigned with probability pj = v2

j /


j v
2
j , where i1 ≤ j ≤ i1 + |Si|. The high speed values from each segment are

chosen from a weighted bootstrapping technique. Based on the re-sampled high speed values, both empirical method and
kernel method are applied to estimate the underlying cumulative speed distribution for each segment. Fig. 2(b) shows that,
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the kernel method generates a smooth cumulative distribution in contrast to the empirical method. The difference between
the cumulative speed distributions is measured by the two-sample Kolmogorov–Smirnov Test,

Dij = max
x

|Fi(x) − Fj(x)| (3)

where Fi(x) and Fj(x) are the cumulative distribution estimated based on the high speed value x empirically or by a kernel
method from segment i and j, respectively.

The p-value, calculated from the Kolmogorov distribution, serves as a metric to measure the similarity. Based on
this metric, the linkage clustering algorithm hierarchically clusters the segments into a few clusters, where each cluster
corresponds to the segments generated from one mode of transport. The segments that lack similarity in the high speed
distribution are labeled according to the empirical probabilities for using various modes in transferring between specific
locations. The unsupervised method achieves a level of accuracy comparable to that of the best known supervised methods.
Since there is no need to manually label the data for training, and it can also cater for differences in individual behaviors,
the unsupervised method may be more widely applicable than the supervised methods.

4. Trajectory mining

Trajectory mining is the most popular topic in the study of individuals’ mobility patterns. A host of studies has been
conducted on various mobility datasets, e.g., individual humanmobility data [5,6,18,19,44], animal movement data [58,59],
hurricane data [58,59], vehicle movement data [14,60–63], and synthetic mobility data [36], etc. We group these studies
of trajectory mining into two sub-topics, namely, (1) trajectory clustering, and (2) trajectory patterns extraction. The main
difference between the two topics lies in their objectives and results. The first topic aims to cluster or classify the trajectories
generated by the same group of objects, e.g., animals of the same kind. The second topic aims to present a variety ofmethods
for modeling common mobility behaviors and for predicting the future move.

4.1. Trajectory clustering

In this context, a cluster is usually a group of trajectories that share common sub-traces or are relatively ‘‘close’’ to each
other. For extraction of sub-trajectories, some of the studies are conducted with the assistance of visualization [64,65]. To
measure the proximity or closeness of the traces, a distance measure between trajectories is usually defined, then some
variants of the density-based clustering methods are introduced in order to cluster the trajectories [36,58–61]. Specifically,
both [58,59] apply the idea of DBSCAN, and [36] uses OPTICS, while [60] is based on fuzzy C-means, and [61] applies a
sequential pattern mining method.

In DBSCAN, the core points that have at leastMinPts points within its ϵ distance form the center of the clusters. Similarly,
in [58,59], the distance measurement between two line segments is defined as the mean of perpendicular distance d⊥,
parallel distance d∥ and angle distance dθ , as shown in Fig. 3(a). Rather than clustering the whole trajectories, Lee et al.
consider it to bemoremeaningful to cluster the common sub-trajectories [58]. Therefore, by using the principle ofminimum
description length [66], each trajectory is partitioned into a list of line segments, simulating the rapid changes of the
directions. By making an analogy to the idea of DBSCAN, the clusters are the group of lines where each line is within ε
distance to the core line, which has sufficient number of lines MinLns with that distance. The representative trajectory
of a cluster is a sequence of line segments that show the general trend of the trajectories within the cluster. Further,
motivated by the observations that discriminative features mostly appear in sub-trajectories and regions, Lee et al. classify
the trajectory based on the features extracted from region-based clusters and trajectory-based clusters [59]. The target
regions are of variable rectangular size and they contain the sub-trajectories of a cluster. These regions are extracted by
iteratively partitioning the space following the principle of minimum description length, which is similar to [58] but with
a different objective function. The trajectory-based clustering aims to find the homogeneous ε-neighborhood, indicating
the trajectories within ε distance form the same clusters. The clusters of homogeneous ε-neighborhood is detected by the
trajectory-version DBSCAN [58], and for each cluster the representative trajectory is similarly generated. The classification
of the trajectories is based on the features generated from both the region-based and trajectory-based clusters. Both
[58,59] effectively detect the discriminative features in each class’ trajectory, which demonstrates high classification
accuracy in animal movement data as well as hurricane data. However, a major issue with these two methods is that the
temporal information is ignored in measuring the distance.

Nanni et al. [36] cluster the trajectories by incorporating the temporal information into OPTICS [46]. Recall in OPTICS the
points are reordered by a characteristic distance, namely, the reachability-distance [46]. For clustering the trajectories, the
distance between two trajectories τ1 and τ2 in time interval T is given by

D(τ1, τ2)|T =


T d(τ1(t), τ2(t))

|T |
dt (4)

where d(x, y) is the 2D Euclidean distance and τi(t) is the position of the trajectory τi at time t .
The problem of clustering the trajectories is formalized to find the best temporal interval within which the minimum

mean reachability-distance of all the non-noise points are achieved, namely, TF-OPTICS. The clustering result in each time
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Fig. 3. (a) The three components, namely, perpendicular distance d⊥ , parallel distance d∥ and angle distance dθ , in measuring the distance between
trajectories in [58,59]. (b) A simple example for the Pairwise Curve-Merging algorithm given two traces P and Q according to tolerance ϵ in [6]. The
distance between p2 and q2 , denoted by dist(p2, q2), is less than ϵ, and also dist(p2, q2) is less than the previous jump distance on the corresponding traces,
e.g., dist(p1, p2), dist(q1, q2), then either p2 is replaced by q2 or vice versa. Fang et al. prove that independent of the choice of replacing either p2 by q2 or
vice versa, the Hausdorff distance [67] between two traces is always less than ϵ.
Source: Figure (a) is from [58,59], and Figure (b) is from [6].

interval is evaluated by considering both the negative mean reachability-distance, and the case in which long time interval
has a lower quality value than that achieved by the subset of the long time interval. Thus, the quality function is given by

Q2(D, I, ε′) =
−Rc

log10(10 + |I|)
(5)

where Rc is the mean reachability-distance within the time interval I,D is the trajectory set, and ε′ is the density threshold
parameter in OPTICS.

The algorithm for searching the maximum time interval is also given. Specifically, an initial time interval is randomly
chosen from the subset of the largest time interval. The iteration is to continually find a better time interval that achieves
larger Q2(D, I, ε′) in the set that extends the previous set by one unit time both backward and forward. The effectiveness of
the TF-OPTICS is evaluated by C4C, a synthetic datasets generator [35]. It shows that, (1) the TF-OPTICS is effective since the
computation time grows linearly with the number of trajectories, and (2) with respect to the clustering results, TF-OPTICS
always shows better clusters than K -means, average-based hierarchical approach, or OPTICS, while it shows low coverage
than the other methods. The main problem of this method is that, in the synthetic mobility traces, the mobility traces are
normally generated at a regular time. In the real-worldmovement data, however, it is common to have some traces collected
irregularly in time, therefore these trajectories may mislead the clustering results.

Pelekis et al. [60] propose a variant of Fuzzy C-Means (FCM) to cluster the trajectories with the discovered Centroid
Trajectory (CenTra). Basically, each trajectory is divided into p sub-trajectories, with each of equal temporal intervals, and
each sub-trajectory is mapped to the regular grids with user defined size. By extending the sub-trajectory ε-buffer along the
directions that is vertical to itsmoving direction, the feature of each sub-trajectory is represented as a fuzzy set specifying the
extent of the sub-trajectory occupies a list of cells, called region. The distance between two trajectories is measured by, (1)
the distance between corresponding regions that contain the two sub-trajectories, and (2) the distance between fuzzy sets
representing the features of the sub-trajectories. The clustering of the trajectory is initially to find the Centroid Trajectory
that exceeds a region density threshold, and the clusters are generated by evaluating the distance to the Centroid Trajectory.
The evaluations of this approach based on the trajectories of GPS-tracked trucks show that, the cluster representative fits the
real movements better than an earlier method called TRACLUS [58]. However, the authors did not elaborate on the suitable
choice of the number of sub-trajectories, which is a crucial factor in determining the length of the sub-trajectory and also
the size of the region.

Lee et al. demonstrate that the sequential patterns are useful for classifying the trajectories on road networks [61]. The
sequential patterns are a list of ordered road segments that exceed the minimum support threshold, which is determined
by the information gain. The discriminative features are selected according to the F-score by comparing the negative set
and positive set, and Support Vector Machine is used to classify the trajectories according to the selected features. The
effectiveness of the methods is verified by using both synthetic data and real taxi trajectories. However, in both dataset the
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a b

c

Fig. 4. (a) A framework for demonstrating the arrangement of the stay points, represented by the red nodes, in the tree-based hierarchical graph. In each
level of the tree, the stay points are grouped into different clusters, based on which each individual’s sequence is constructed according to the different
tree level. (b) A sample for demonstrating the connections between individuals and locations at the third level of the tree on the left. (c) The adjacency
matrix showing the relation between individuals (hubs) and locations (authorities) according to (b).
Source: Both figures are from [18].

number of classes is small, specifically two, thus the classification effectiveness on more classes is unclear, especially when
the trajectories share some common roads.

4.2. Graph-based trajectory mining

There are two types of approaches for describing trajectory patterns from raw traces. In the first type of approaches, the
trajectories are described as transitions among places of significance to the given scenarios. Therefore, individuals’ mobility
is described as a graph, where each node indicates the places the individuals have passed by and the edges are enriched
with other features, such as the duration of transitions and the frequencies [5,6,18,19,44]. In the second type of approaches,
the trajectories are converted to spatio-temporal items [14,62,63], in which the frequent patterns and periodic patterns are
discovered.

Fang et al. [5,6] construct a personalized activity map from raw trajectories and further model individual dynamics.
Significant locations are detected based on both dwelling time and visiting frequency. Representative paths are extracted
by Pairwise Curve-Merging (PCM) algorithm. At each time, PCM algorithm iteratively compares two traces, e.g., trace P and
Q , under a given tolerance ϵ, such that each point p from P is compared with its nearest neighbor q in Q . If p is within the
tolerance distance of q, and if p is closer to q than any adjacent point of p in P , then p is replaced by q, where an example is
given in Fig. 3(b). The personalized activity map, including significant locations, representative paths, and some additional
information such as edgewidth, speed and number of traversals on the edges, is useful formodeling individual dynamics [5].
Individual’s current location will be mapped to the nearest edge on the map. When reaching a crossroad, an outgoing edge
is chosen by applying a particle filtering-based inference along with the historical probability of turning at each outgoing
edge. However, using particle filtering-based inference to predict the location at a crossroad requires sufficient number of
historical trajectories because sparse data may bias the probability of choosing a road.

In [18,19,44], the path patterns are presented in a graph-theoretic manner, where the definitions for the nodes in the
graph are different.

A tree-based hierarchical graph (TBHG) is proposed for modeling individual’s location histories, based on which some
useful information is extracted [18,19]. A location history is a sequence of stay points, where an individual stays over
a minimum period. The TBHG, consisting of a tree-like hierarchy and a graph associated with each level of the tree, is
constructed from the location histories of all individuals. The hierarchy is obtained from all the individual’s stay points
in a divisivemanner. The graph associated with each level of the tree is obtained by sequentially connecting the clusters in a
same journey. For instance, a three-level hierarchy is presented in Fig. 4(a), where smaller clusters are formed on the lower
level of the tree, and larger clusters are on the higher level of the tree.

Locations of interest and individual travel experiences are inferred based on a HITS-based inference model [19]. In this
model, each individual is considered as a hub and the clustered locations at a specific level are taken as authorities, as shown
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Table 2
A sample of continuous trajectories and discontinuous trajectories with origins and destinations, and it is
from [44]. In the discontinuous trajectories row, a × indicates the loss of current trace. If the trajectories
are continuously collected the time-based clustering algorithm can successfully detect the significant
locations a, b, and c under a density threshold of 2. In the discontinuous trajectories, however, none of
these significant locations are observed since all the locations bear a density less than 2 within a temporal
neighborhood. The underlying assumption is that only the locations in the adjacent traces are within
the same temporal neighborhood. For instance, in the discontinuous case the location a in trace 1 is not
temporally adjacent to the same location in trace 3, thus the requirement of minimum density is not met.

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 Trace 6

Continuous a → b b → c c → a a → b b → c c → a
Discontinuous a → b × c → a × b → c ×

Table 3
An example of the containment relation. Given two spatial–temporal sequences T and I , each
of them is indicated by the transitions between location along with time. In sequence I , the
locations b and d are considered as synonymous since they are close to each other. Given the
time tolerance τ , T is contained in I if the corresponding travel time satisfies, |t1 − t ′1| ≤ τ

and |t2 − (t ′2 + t ′3)| ≤ τ .

T : {a}
t1
−→ {b}

t2
−→ {c}; I : {a}

t ′1
−→ {b; d}

t ′2
−→ {f }

t ′3
−→ {c}

in Fig. 4(b). This method is similar to HITS, in that the good hubs and good authorities are always connected. Let a be the
authority scores and h be hub scores, e.g., according to the example in Fig. 4(b), a = (a31, a32, a33)T , h = (h1, h2, h3, h4)

T ,
where each a3i is the score of the cluster c3i and hi is the score of ui. The relation between authority scores and hub scores
are calculated as a = MT

· h, h = M · a, whereM denotes the adjacency matrix which is derived from the individuals’ travel
histories, e.g., the adjacency matrix in Fig. 4(c) is derived from Fig. 4(b). This method outperforms some baseline algorithms
such as rank-by-count and rank-by-frequency either separately or jointly, in ranking the interesting locations and inferring
travel sequences. The similarity between individuals is quantified through a similaritymetric considering both the sequence
of the trajectory and the hierarchical properties of the locations in the graph [18]. Although individuals sharing similar travel
sequences can be effectively measured in [18], a group of colleagues or friends who do not share similar travel sequences
may not be differentiable merely through similar sequences.

Chen et al. [44] mine the movement patterns from individual GPS trajectories, and further predict both the destination
and route through a pattern matching process. Forward–Backward Matching, a variant of time-based clustering algorithm,
is proposed to cluster the origins and destinations from the trajectories. It initially generates the candidate clusters both in a
forward and backwardmanner, andmerges the candidate clusters that are at a small distance. Forward–backwardMatching
avoids the casewhen the trajectories are not continuously collected. Table 2 illustrates several such instances. The remaining
points, except for the origins and destinations, are labeled according to a space-partitioning method. Chen et al. avoid the
answer-loss problem [68] in the followingmethod. Firstly, each cell is labeled by the origin–destination pairs of the trajecto-
ries that pass it alongwith the counts. The cell ci ismerged into its adjacent cell cj, under the case that each origin–destination
pair with a path passing through cell ci has a count less than that in cell cj. Therefore, the trajectories are simplified into,
(1) origin–destination pair, and (2) a cell sequence along with the pairs of origin–destination with a path passing through
it and the corresponding counts. The proposed algorithm is superior to the 1st- and 2nd-order Markov model with higher
accuracy in 1-step prediction, and resulting in smaller Hausdorff distance [69] in continuous route prediction. Considering
thatmere geographic information, such as the location at each time step, is applied in the proposed algorithm, incorporating
additional information, such as time, date, modes of transport, etc., may increase the performance of the algorithm.

4.3. Trajectory mining as spatial–temporal item

By describing the trajectories as a list of regions-of-interest or rectangular regions, the path patterns are considered as
the frequent spatial–temporal item sets in [14,62,63]. Note that, [62] is the only study considering the temporal information
in mining path patterns.

The objective of the study in [62] is to find the trajectory patterns that exceed theminimum support. A trajectory pattern
is defined as the trajectories sharing both similar sequence of locations and the travel times. A spatial–temporal sequence is
a location sequence with travel times. The containment relation among the sequences is defined based on the neighborhood
function and the time tolerance, shown in Table 3. The neighborhood function is used to cluster the locations intomeaningful
areas, i.e., static or dynamic Regions-of-Interest. The static Regions-of-Interest are generated before the mining process,
while the dynamic Regions-of-Interest are generated along with the process of mining the sequences. The experimental
results on real and synthetic data indicate that the running time of both algorithms are almost linear to the length of input
sequences. The main problem in defining the trajectory pattern in [62] is that, the transition time is not well defined, which
involves both the travel time between two locations as well as the dwelling time at the destination.
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Themined pattern or the so-called T -Pattern is useful in predicting the next location [70]. Firstly, the extracted T-patterns
are ordered in the T -Pattern tree, where each node contains the entries of region ID, support, and the pointers to the children.
The region in this case is referring to the regular grid of high visiting frequency. One node points to another node only when
they are observed sequentially in the trajectories, and the connection is enriched by the minimum and maximum travel
time between the corresponding regions in the nodes. When predicting the next location, the given trajectory history is
matched with the tree according to the specified spatial and temporal tolerance. By tuning the spatial tolerance, indicating
the maximum distance of the current trajectory to the matched T-pattern tree, the balance between the predicting rate and
accuracy is adjustable. The authors suggest that the major contribution is that the prediction based on T-pattern tree allows
the end users to specifically choose between predicting rate and the accuracy by tuning the spatial tolerance. A similar study
about balancing between the predictability and the accuracy of the predictions is also reported in [51], which is discussed in
Section 2. However, when the spatial tolerance is small, e.g., 10m, the predicting rate is less than 40%, and the corresponding
predicting accuracy is around 60%. When the predicting rate is low, they did not propose any method to handle the case.
Some possible solutions regarding the spatial and temporal relevance of the locations can be applied in these cases [71].
For instance, when the current prediction is not in the existing prediction cases, the choice can be made according to the
visitation frequency of each location, the distance to the current location, as well as combining the information of these two.

Cao et al. [14,63] aim to mine frequent patterns and periodic patterns from a spatio-temporal sequence extracted from a
GPS trajectory. A series of rectangular regions are used to represent the trajectory into a spatio-temporal sequence. Frequent
singular patterns are discovered by using a heuristic called growing [14]. A segmentwithmedian length is first chosen. In the
filtering and verification steps, the chosen segment is merged with other segments that share similar characteristics. This
process is repeated until either all the segments have been assigned to a region or no region is found for the segments—in
the latter case the segments are outliers. To mine the frequent substrings, a stack is employed in a substring tree, which is a
rooted directed tree with the root linking to multiple substring sub-trees. According to the experimental results on verified
bus trajectories, the proposed method is more effective than the grid-based method, since some of the sequential patterns
within a grid cannot be captured in the grid-based method. Also, the substring tree method is more efficient, in terms of
execution time, than the level-wise method and grid-based method.

The objective in [63] is to discover all the valid, frequent and nonredundant patterns with respect to aminimum support.
A valid pattern is a sequence of valid regions, with each representing a dense cluster following the definition of DBSCAN [45].
A pattern is redundant if it can be implied by the other patterns. The frequent 1-patterns are initially generated from the
dense clusters. An example of valid pattern and redundant pattern is given in Fig. 5(b) and (c). Threemethods are proposed to
find longer patterns, which are a variant of level-wise Apriori-TID algorithm [72] (STPMine1), a faster top-down approach
(STPMine2), and a simplified version of STPMine2 (STPMine2-V2). In STPMine1, the candidates for the frequent patterns
with length k are generated from those of length k − 1. The ones with support exceeding a threshold and an additionally
valid pattern are chosen to be the frequent patterns of length k. In STPMine2, the trajectory is converted to a time series
sequence, where periodic patterns are mined according to a modified algorithm in [73]. STPMine2-V2 mines the patterns
approximately in an efficient manner. The experimental results show that both STPMine1 and STPMine2 identify the same
longest patterns, but STPMine2-V2 is able to find similar longest patterns. Both STPMine2 and STPMine2-V2 are more
efficient than STPMine1, since the former two scan the data less number of times than the latter. However, in all the cases, the
length of periodic patterns has to be specified, and the frequent periodic patterns of different lengths cannot be automatically
identified.

In summary, the key point in the study of trajectory mining is to find certain representative locations4 in describing the
raw trajectory. By converting the raw trajectory into a list of representative points, the topics such as trajectory clustering
and trajectory pattern extracting can be conducted in a similar manner to the study of clustering, frequent item mining or
graph studies.

5. Location-based activity recognition

Inferring location-based activities is a procedure of learning behaviors from movement or positioning related data. The
data can be, for instance, the reading from the GPS devices, the road that the individuals currently on, the information from
a digital map, etc. The behaviors can be the destination for the trip, the purpose of this trip, or the kind of activities that
will take place at the destination, etc. A few location-based activities can be recognized through GPS data, such as working,
visiting friends, on or off a car, dining, shopping, etc. Generally, the individual’s mobility is modeled by types of conditional
models, where a few examples are shown in Figs. 6 and 7.

Do et al. infer individual’s next place and the dwelling time at the place by using a factorized conditional model according
to the extracted features [17]. The factorized conditional models can greatly reduce the size of parameter space than that
from the full conditional model given in Fig. 6. Specifically, the location information they applied is from the source of GPS
sensors and WiFi data. The individuals’ trace is converted to a sequence of meaningful locations indicated by grid cells,
which are obtained by merging the locations recorded inside. The tasks of predicting the next location and the duration of

4 In the study of trajectory mining, not all the representative locations in describing the trajectories share the idea of significant locations that we have
discussed in Section 2 since in some cases all the points in the raw trace are retained.
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Fig. 5. (a) A sample of simplified trajectory pattern in [14,63]. The trajectory for (xi, yi), where 1 ≤ i ≤ 6, is simplified by its representative line lij
according to the distance threshold r . The path patterns of two trajectories are considered to be similar if the corresponding representative lines satisfy
two conditions, namely, (1) the angle between two lines is less than a threshold, (2) the distance between the two lines is less than a threshold. (b) and (c)
A sample of valid and redundant patterns defined in [63], respectively. In Figure (b), each point falls to the corresponding cluster indicated by the ellipse,
and the valid pattern is P = C1 − C2 − C3, where each Ci indicates a cluster. Figure (c) indicates a pattern P ′

= R1 − R2 − R3, which can be implied from
P , thus it is a redundant pattern.
Source: Figure (a) is from [14], and Figures (b) and (c) are from [63].

ba

Fig. 6. (a) The general full conditional model. (b) The factorized conditional model given in [17]. The number of parameters of the full conditional model
increases exponentially with the increasing size of the feature space. Therefore, when the feature space is large, the required training dataset becomes
very large. However, by handling the features in a group rather than individually in the factorized conditional models the parameter space may be greatly
reduced, which is especially useful in modeling individual’s mobility.

stay are reduced to finding the conditional relations between the feature space X to the behavior space Y in the factorized
conditional model

P(Y |X) =

K
k=1

Pk(Y |Ck)
wk

Z(X)
(6)

where Ck ⊂ X indicates a subset of features, wk is the weight for each distribution Pk, and Z(X) is the normalizing constant.
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b

a

Fig. 7. Two typical dynamic Bayesian networks [12,74], including the observable nodes, hidden nodes and the dependencies between them, are presented
in modeling individual’s mobility. In the dynamic Bayesian network, each node represents the variable at a given time, and the arrows indicate the
dependencies between different variables. In both cases, only the GPS reading are the observable nodes, and the remaining ones have to be learned from
the mode. The main difference between (a) and (b) is that, the model in (b) is in a fine-grained level, where the switching between modes, trips and goals
are considered. In (a), the solid lines indicate the intra-temporal causal links and the dashed lines indicate the inter-temporal links.

The weight of each distribution is learnt based on the training data collected from all the individuals, whereas the
parameters for each distribution is exclusively learnt according to the individual’s data. The experimental results show
that the accuracy in predicting the next location by using a combination of the subset of the features in the factorized
conditional model is more than 10% higher than that based on any single feature or the combination of a few, and a similar
result is reported for the prediction for the duration of stay. However, one issue regarding applying the factorized conditional
model is the choice of appropriate subset of features. In the original paper, the authors obtained the combination by a greedy
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search process, which always chooses the features that achieve the highest predicting accuracy. However, in general, the
best overall results may not be obtained by choosing the list of the features that show the best performance individually.

In the Bayes inference, the posterior probability density for the variable of concern, e.g. individual’s state at current time
xk, conditioned on the data so far z1, . . . , zk can be recursively estimated,

p(xk|z1:k) ∝ p(zk|xk)


p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (7)

where the state xk may contain different factors. In the following we review a few approaches in details.
Patterson et al. [12] construct a dynamic Bayes net model to infer high level behaviors, such as modes of transport and

transportation routes, from noisy GPS data. The dependencies, observable nodes and hidden nodes are presented in Fig. 7(a).
The state xk, defined as xk = (e, d, v), indicates that the individual is on edge e, at a distance d to the start vertex of e and

is traveling at a speed v on the edge. The current location is lk = (e, d), and ok is the expected sensor error. The transporta-
tion modemk is chosen from {BUS, FOOT , CAR}, and the velocity vk from each mode is generated according to the Gaussian
distribution, where the parameters for the Gaussian distributions of three different modes are learned by a Gaussian mix-
ture model. Since the mode of FOOT is unlikely to generate a high speed value, the velocity from this mode is generated by
the Gaussian distribution with smallest mean. The mode of CAR, however, is still possible to generate a low speed value,
therefore the speed from CAR is assumed to be evenly chosen from the three Gaussian distributions, which is an intuitive
choice but it has not been validated.

The posterior distribution of the state xk is represented in a particle filter method, where Sk = {(xik, w
i
k)|i = 1, . . . , n},

and the weight wi
k = p(zk|xik) is assigned according to the likelihood of the observation. The parameters, such as the edge

transitions, and mode transitions, etc., for this model are learned by iteratively maximizing the posterior probability in the
EM algorithm.

Liao et al. model an individual’s daily movements by a three-level hierarchical activity model [74], where the depen-
dencies and variables are shown in Fig. 7(b). In this model, the lowest level estimates the individual’s location and velocity
from GPS readings. The middle level represents the modes of transport and segments of a trip. The highest level represents
the individual’s next locations. The posterior distribution of the parameters based on the observations z1:k is separated into
continuous and discrete parts,

p(xk,mk, f tk , f mk , θk, τk|z1:k) = p(xk|mk, f tk , f mk , θk, τk, z1:k)p(mk, f tk , f mk , θk, τk|z1:k) (8)

where the continuous parts are the locations and velocity in the state xk, the discrete parts are transportationmodemk, edge
transition τk, mode switching f mk and trip switching f tk .

Similar to [12], Rao–Blackwellized particle filters [75] are used for inference. In detail, the discrete states are sampled
by a particle filter and the continuous states are sampled by a Kalman filter conditional on the discrete samples. The next
locations, transfer locations, and transition matrices are obtained from the model given the structure and parameters esti-
mated from the EM algorithm. Moreover, the errors are detected through two trackers. One tracker uses the learned model
to predict individual’s ordinary routine, and the second tracker uses a flat model accounting for general physical constraints
but it is not adjusted to the individual’s routine to detect something unexpected.

A three-level hierarchical model is applied in [76]. However, the inference algorithms are different from [74]. In [76], a
discriminative relational Markov network (RMN) is used to identify significant locations, meanwhile a generative dynamic
Bayesian network is used to learn transportation routines, infer goals and errors.

In [77], the hierarchically structured conditional random fields are used to extract an individual’s activities and signifi-
cant places [13], which are a simplified version compared to those in [74,76]. The lowest level is the associations between
each GPS reading and the relevant patch of street map, in which three feature functions are defined to indicate their rela-
tionships. Themiddle level consists of the activity objects, each of which is featured by temporal information, average speed,
geographic information, and the compatibility between types of activities. The top level includes place objects, which are
featured by the frequency of activities occurred, and cliques that count the number of different homes and work places. A
conditional random field [77] is constructed for labeling the activities and places based on the features extracted.

All these hierarchical probabilistic models are not naturally inheritable. Given additional training data, the structure of
the model must be learned again, as the parameters of the old model become inapplicable with the new data.

There are several other studies [78–80] that target on recognizing individuals’ daily activity patterns from the GSM-
based localization, blue tooth communications [78,79], and even the activity survey data [80]. These studies apply formal
approaches such as, Latent Dirichlet Allocation [81], or Hidden Markov Models [82], etc. The interested readers should
consult these papers directly.

6. Issues for further research

Besides the topics discussed in the previous section, many issues concerning individuals’ mobility are of great interest.
This section discusses a few new and emergent issues for further research.
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6.1. Further study on predictability

Although many findings of predictability have been presented on GPS data [51], major questions remain unanswered. In
both [1,51], individuals’mobility records are generated at a fixed sampling rate. The fixed sampling rate incurs twoproblems.
(1) If multiple locations are visited within a sampling period, only one location will be captured, which leads to incomplete
modeling of individuals’ mobility. (2) The sampling rate determines the length of sequences, the entropy it contains, etc.
Thus, from a theoretical perspective, whatwould be the optimal rate to perfectly preserve the information about individuals’
mobility without much redundancy?

Besides sampling at a fixed rate, there are other alternatives for generating mobility sequences [83], such as movement-
based encoding, and a hybrid of time- and movement-based encoding. In movement-based encoding, a transition between
locations is encoded when there is a change of location, while the hybrid of time- and movement-based encoding retains
the benefits of the two methods. For a given sampling rate, if there is a change of locations in between two periodic
samples, the transitions are encoded as the movement-based encoding method, meanwhile the transitions are encoded
periodically as the time-based method. Intuitively, the movement-based encoding method may overestimate individuals’
mobility, since the entropy contained in the stringmay be relatively large. The time-based encodingmethodmaymiss some
mobility information, such as the transitions between locations within a sampling period. Therefore, a mixture of time- and
movement-based encoding method may be a good choice, provided an appropriate sampling rate is chosen.

Also, the predictability Π of individual’s mobility should be a function of both the spatial scale λ and the temporal scale
τ , respectively representing the size of each location and the sampling rate in capturing the mobility string,

Π = f (λ, τ ). (9)

The issue of determining how the predictability varies with respect to both λ and τ is clearly fundamental to the mobility
research and it deserves a thorough study.

6.2. Modeling the process of mobility

Recall that when estimating the entropy from a location string, the Lempel–Ziv data compression algorithm is applied
under the assumption that the process of human mobility is a stationary and ergodic process [1]. It is reasonable to assume
that the humanmobility process has these general statistical properties. However, it is unclearwhether individuals’mobility
has the properties of a Markov process. The empirical study based on real human trajectory is necessary to validate the
natural behavior of human mobility, such as the dependency between locations, the probability of transition between
locations, etc.

6.3. Mobility data compression and prediction

Feder andMerhav [84] show that each lossless data compression algorithmmay be transformed to an effective algorithm
for predicting next symbols. Although the Lempel–Ziv algorithm is applied to estimate the entropy rate in the location string
in [1], no corresponding predicting algorithm is furthermentioned or applied. The existing study shows that predictors based
on Lempel–Ziv data compression algorithm are effective in different domains: text, music and proteins [85]. However, it is
unclear whether the Lempel–Ziv algorithm is an appropriate choice for predicting individuals’ next move. Besides, some
alternatives have been proposed, such as prediction by partial match [86], context tree weightingmethod [87], probabilistic
suffix tree [88], etc. The fundamental theory underlying these predictors is similar, which uses Markov model to model the
dependency in the sequence and the order of the Markov model is gradually increased along with the length of the input
sequence. Themain differences among the approaches lie in themethods for counting frequency, estimating the probability
of unobserved events, and determining the variable length etc. Thus, one relevant question is: which data compression
algorithms is more suitable for modeling individuals’ mobility sequences? How do we tailor the algorithms based on the
special characteristics of individual’s mobility behaviors?

6.4. Constructing mobility models

Among various mobility models, the trace-based mobility models are the most realistic models since the objective
of these models is to fit the statistical properties observed from real trajectories. However, most trace-based mobility
models [9–11] are constructed based on the trajectories under the walk mode. In reality, however, each individual may
apply a combination of modes of transport when traveling around, which may have different statistical properties from the
trajectory under the walk mode. The mobility models should exhibit both regularity and randomness. The high regularities
as recently reported in [1,2] include: high frequency of visiting a few locations, stable transitions among the locations, etc.
Meanwhile, human mobility is seldom deterministic. For instance, the path followed by an individual from one location
to another may be slightly different each time, and the locations that are seldom visited should also be considered. Thus,
random models such as Brownian motion, Lévy flight, etc., may be appropriate models for modeling the randomness in
human mobility.
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7. Conclusions

We have reviewed many recent results on mining mobility patterns from GPS data, and have covered issues such as
locations of significance, modes of transport, trajectory patterns and location-based activities. We also have suggested a few
outstanding issues for further study. Although this survey aims to include asmany topics concerning individuals’ mobility as
possible, some issues are necessarily left out; the mobility studies based on the other types of data, such as GSM cell-tower
data and wireless network logs, are also not included. Nevertheless, we hope that this survey may serve as a quick guide for
those who are interested in making contributions to the emerging area of individuals’ mobility.
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