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ABSTRACT Rapid advance of location acquisition technologies boosts the generation of trajectory data,
which track the traces of moving objects. A trajectory is typically represented by a sequence of timestamped
geographical locations. A wide spectrum of applications can benefit from the trajectory data mining.
Bringing unprecedented opportunities, large-scale trajectory data also pose great challenges. In this paper,
we survey various applications of trajectory data mining, e.g., path discovery, location prediction, movement
behavior analysis, and so on. Furthermore, this paper reviews an extensive collection of existing trajectory
data mining techniques and discusses them in a framework of trajectory data mining. This framework and
the survey can be used as a guideline for designing future trajectory data mining solutions.

INDEX TERMS Trajectory data mining, big data applications, data mining techniques.

I. INTRODUCTION
Nowadays, there have beenmany technologies which provide
positioning services e.g., Global Position Systems (GPS),
Radio Frequency Identification (RFID), location estimation
of 802.11, smart phone sensors, GSM beacons, infrared or
ultrasonic systems and so on [1]. As a consequence, it is
becoming easier to generate large-scale trajectory data of
tracking traces of moving objects.

A trace of a moving object in geographical space is
continuous while a trajectory is only a sample of location
points that the moving object passes as shown in Fig. 1.
Typically, a spatial trajectory, as a simplest case of trajectory
data, is represented by a sequence of timestamped locations,
e.g., 〈(p0, t0), (p1, t1), · · · , (p7, t7)〉 in Fig. 1. Duration and
sampling rate of a trajectory depend on applications.

Trajectory data are collected from various sources. One
of the most common types is generated by GPS-equipped
vehicles. Besides, other kinds of trajectories probably
come from smart phones, online check-in data, geo-tagged
messages or media in social networks, RFID readers,
and so on. Consequently, moving objects can be human
beings, animals, vehicles, and even natural phenomena
(e.g., hurricanes).

FIGURE 1. A trajectory is generated by sampling from a continuous trace.

There exist a wide spectrum of applications driven and
improved by trajectory data mining, such as path discovery,
location/destination prediction, movement behavior analysis
for individual or a group of moving objects, making sense
of trajectories and other applications of urban service.
These applications significantly benefit the common people,
commercial organizations and government agencies.
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However, it is challenging to manage, process and mine
trajectory data [2], [3]. We take several challenges as
example. Firstly, it is a nontrivial task to store a huge
volume of trajectory data which are rapidly accumulated.
Secondly, it is intractable to define a similarity metric for
comparing trajectories (which is a fundamental functionality
in trajectory data mining) since trajectories are probably
generated with different sampling strategies or at different
sampling rates. Thirdly, processing queries on the vast
amount of trajectory data is highly difficult in terms of space
or time complexity.

To address these issues, an extensive collection of
approaches have been proposed and we classify them
according to the main procedure of trajectory data mining.
Furthermore, we propose a framework that reorganizes these
approaches and then provide a comprehensive survey on
trajectory data mining. Roughly speaking, there are three
layers in the framework, i.e., data collection, trajectory data
mining techniques, applications.
Specifically, the layer of trajectory data mining techniques

contains five components listed as follows:
• Preprocessing: In the preprocessing phase, trajectories
are usually cleaned, segmented, calibrated, sampled
for representatives, or inferred from uncertain
trajectories.

• Data management: Sometimes, trajectories are
compressed or simplified before being stored. Besides,
efficient or scalable storage systems are supposed to be
built. Furthermore, appropriate index structures are also
necessary to support query processing.

• Query processing: There are various queries that have
to be processed to retrieve data, e.g., location-based
queries, range queries, nearest neighbor queries,
top-k queries, pattern queries, aggregate queries and
other application-specific queries. These queries are
processed based on an underlying storage system and
index structure.

• Trajectory data mining tasks: Trajectory data mining
tasks are summarized and classified into several
categories, i.e., pattern mining, clustering, classification
and knowledge discovery.

• Privacy protection: Privacy-preserving is a crucial
problem in every procedure of trajectory data mining.
Several examples are provided to illustrate how to
process trajectory data as well as to protect sensitive
information of users.

The rest of the paper is structured as follows.
Section II offers some definitions. A framework character-
izing the whole procedure of trajectory data mining is
presented in Section III. The next five sections, Section IV to
Section VIII, cover the important components of trajectory
data mining techniques. Next, applications of trajectory
data mining are discussed in Section IX. Section X
discusses a few open issues. Finally, the paper is concluded
in Section XI.

II. DEFINITIONS
In the section, we define some primary terminologies,
e.g., trajectory, semantic trajectory, road network, path.
Definition 1 (Trajectory): A trajectory of a moving

object is a discrete trace that the moving object travels
in geographical space. Generally, it is a sequence of
geo-locations with corresponding timestamps in spatio-
temporal space, i.e., T = {< p1, t1 >,< p2, t2 >, · · · , <
pn, tn >}, where each element < pi, ti > indicates a moving
object is at location pi at timestamp ti. Further, elements are
sorted by timestamps, i.e., tj < tk if 1 ≤ j < k ≤ n.
A moving object can be a person, an animal, a vehicle,

a mobile device, or even a phenomenon. A trajectory of a
person records one’s trace for a period of time. For example,
a trajectory of a person in a daytime may record his path
to work in the morning and his path to home at night.
A trajectory of an animal describes its trace generated by
daily activities such as running. A trajectory of a vehicle is
recorded by a GPS device installed in the vehicle and usually
reports locations of the vehicle at a fixed rate, e.g., every
second or every minute.

A location is usually expressed by a tuple of 〈longitude,
latitude〉 which is recorded by a GPS device. Each tuple
of 〈longitude, latitude〉 corresponds to a unique point in
geographical space. A special kind of trajectory data is RFID
data. There are two types of devices in RFID technology,
i.e., tags (which emit radio signals with identification
information) and readers (which detect signals from tags).
Generally, a moving object is a tag device, i.e., a good
in a warehouse. A location is expressed by identification
of a reader which detects signal from that tag. Essentially,
locations of a moving object are recorded by corresponding
geographical areas of readers that detect its signals.

Sampling rates of trajectory data vary greatly from data
source to data source. Due to energy and storage limitation,
trajectories of different kinds of moving objects are sampled
at different rates. Trajectory data of vehicles usually have
higher sampling rates than those of mobile devices since
vehicles can provide adequate battery and storage.

Specifically, a trajectory introduced above can also be
called a geographical trajectory or a raw trajectory. Then,
we introduce a special kind of trajectory data that integrate
geographical positions with semantic meaning.
Definition 2 (Semantic Trajectory): A trajectory is called

a semantic trajectory when its locations are associated with
semantic entities.

Semantic trajectories are often generated by tagging a
location point with a meaningful place in real world apart
from numerical coordinates, such as check-in data. Besides,
when a geographical trajectory is associated with description
text which expresses one’s feeling and emotion, it is also a
kind of semantic trajectory data.

When considering trajectories generated by vehicles, we
often refer to a road network and paths in the road network.
Their definitions are given as follows.
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Definition 3 (Road Network): A road network is a
directed graph, G = (V ,E), where V and E are a vertex
set and an edge set, respectively. A vertex, vj ∈ V , is a road
junction or road end. An edge, ek = vpvq ∈ E , denotes a
directed road segment, on which travel direction of moving
objects is from vp to vq.
Definition 4 (Path): A path, P = 〈e1, e2, · · · , e|P |〉,

represents a sequence of edges in a road network, where
ei ∈ E and ei 6= ej if i 6= j. Specifically, consecutive edges
e.g., ei and ei+1, must share a vertex which is end vertex of ei
and source vertex of ei+1.

FIGURE 2. An example of a road network and paths. All location points in
a trajectory are matched to edges in a road network and as a result paths
are generated. Suppose a road network is denoted by G = (V , E), where
its set of vertices is V = {A, B, C, D, E, F } and its set of directed edges is
E = {AB, BA, BC, CB, BD, DB, DE, ED, DF , FD}. The generated path after
map-matching is 〈AB, BD, DE〉.

Fig. 2 gives an example of a road network and paths. Each
location point in the collected trajectory is first matched to a
specific road segment on the map. The path that the moving
object travels is 〈AB,BD,DE〉.

III. A FRAMEWORK OF TRAJECTORY DATA MINING
In the section, we propose a framework that summarizes
a whole procedure of trajectory data mining as shown in
Fig. 3. It is worth noting that not every step in the layer of
trajectory data mining techniques is necessary and it depends
on requirement of applications and collected data.
Firstly, trajectory data are generated by various moving

objects and collected from multiple data sources. In the
paper, we omit details in data collection. Then, main
part of trajectory mining techniques are presented with
five components, i.e., preprocessing, data management,
query processing, trajectory data mining tasks, and privacy
protection. Finally, in the layer of applications, we review an
extensive of applications from six categories.

FIGURE 3. A framework of trajectory data mining.

The layer of trajectory data mining techniques is
organized as follows. Preprocessing attempts to improve
quality of trajectory data and to partition trajectories into
sub-trajectories for further processing. Data management
solves the problem of storing a huge amount of trajectory
data in an efficient and scalable manner. Query processing
aims to retrieve appropriate data from the underlying
storage system efficiently. The component of trajectory data
mining tasks summarizes several important types of mining
tasks. Protecting privacy of users with privacy-preserving
techniques is an essential problem throughout these four
components above and thus it can be combined with any
component.

All components of trajectory data mining techniques and
the layer of applications will be discussed successively in
following sections.

IV. PREPROCESSING
Preprocessing is a basic step that performs at the beginning
and it aims at improving quality of trajectory data and
generating sub-trajectories. In the section, we presented five
common operations in preprocessing phase.

A. CLEANING
Outliers existing in trajectory data highly degrade performance
of trajectory data mining techniques. Previous work [4] trys
to detect suspicious moving objects or to capture features of
many abnormal moving trajectories.

Due to ambiguity of RFID data, i.e., there existing no
deterministic location given multiple readers detected an
object, cleaning trajectory data aims to discard impossible
locations or trajectories exploiting specific constraints,
e.g., maximum speed, unreachability constraints [5].

B. SEGMENTATION
In many application scenarios, a trajectory is partitioned into
sub-trajectories [6], each of which is often called a segment,
a partition or a frame. Generating sub-trajectories is rational
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because it corresponds to underlying structures in trajectory
data, e.g., a path with multiple road segments.

A partition-and-summarization approach [7] that attempts
to generate human-readable description of trajectory data
also divides a trajectory into several partitions according to
behaviors of moving objects.

Trajectories are partitioned into frames [8], [9] in order
to efficiently store sample points of a moving object which
are aligned by time intervals, leveraging state-of-the-art
column-oriented storage system.

C. COMPLETION
Due to consideration of storage and transmission, trajectories
are mostly collected at relatively low sampling rates,
only providing partial observations of actual routes. These
trajectories are called uncertain trajectories. It is a crucial
problem to infer uncertain trajectories with the aid of various
constraints in reality. Existing studies [10]–[14] aim to
complete these trajectories and support trajectory data mining
tasks.

D. CALIBRATION
Trajectories that represent discrete approximation of original
routes with different sampling strategies and different
sampling rates are heterogeneous. Heterogeneity has a
negative effect on measurement of trajectory similarity,
e.g., it is difficult to compare two trajectories derived with
different sampling strategies by directly utilizing spatial
proximity based similarity measures like Euclidean distance.
Su et al. [15], [16] focus on transforming such heterogeneous
trajectories to ones with unified sampling strategies.

E. SAMPLING
In the field of trajectory data mining, approaches are
often operated on a large trajectory databases and thus
operations are complicated, expensive and time-consuming.
Trajectory sampling approaches [6], [17], [18] aim to reduce
a large trajectory database appropriately, taking only the
most representative samples of original trajectory database.
Certainly, the subset of samples should encapsulates mobility
patterns hidden in the original trajectory database.

Pelekis et al. [6] represent a trajectory as a symbolic vector
that quantifies the representativeness of each trajectory,
and then propose an unsupervised method to sample
representative trajectories. In another work [17], trajectory
sampling are operated on sub-trajectories, i.e., segments
of trajectories, deriving local trajectory descriptors that
represent line segments. A recent study [18] whose objective
is supporting trajectory aggregate queries also addresses the
trajectory sampling problem. It focuses on approximating
queries processing with response-time constraints.

V. DATA MANAGEMENT
How to store a huge amount of trajectory data is a
fundamental problem in trajectory datamining. In the section,
we discuss the problem from two aspects.

A. COMPRESSION
It is relatively problematic to store or transmit a huge amount
of trajectory data created by location-acquisition techniques.
As some location points in a trajectory are often redundant,
trajectory compression algorithms [19]–[21] are promising
to reduce storage requirements and communication loads.
A compression approach oftem makes a tradeoff between
compression ratio and maximum error. Generally, the higher
the compression ratio, the poorer the quality of compressed
trajectory data. Typical approaches are line generation and
delta compression.

Trajic [19] achieves a relatively good compression ratio
if users are willing to tolerate a small amount of error.
It contains a predictor which predicts next data point, and a
residual encoding scheme that generates small residuals to
compensate difference between predicted value and actual
value.

PRESS [20] is a novel framework that separates spatial
representation from temporal representation and proposes a
spatial compression algorithm and a temporal compression
algorithm, respectively. Thus, compression is efficient due to
parallelism of spatial and temporal compression procedures.
Spatial-temporal queries can be executed without fully
decompressing trajectory data. It is also a lossy compression
approach like Trajic.

Liu et al. [21] propose an online error-bounded
compression system. The approach creates a virtual
coordinate system which is centered at a starting point and
builds convex-hulls to bound points.

Some other studies claim that original trajectory data
are significantly large and are suggested to be simpli-
fied [22], [23]. Such simplification can be regarded as a kind
of lossy trajectory compression.

B. STORAGE SYSTEMS & INDEX STRUCTURES
How to store the tremendous amount of trajectory data
produced by location-acquisition technologies is a crucial
problem [8], [9], [24]–[27].

To boost performance of query processing for trajectory
data, Wang et al. [8], [9] propose SharkDB, a novel
in-memory based trajectory storage system. To employ
column-oriented storage, trajectories are partitioned into
frames, and then frames are further compressed and
well-structured to better support trajectory data mining.

TrajStore [24] is a dynamic storage system which is able
to retrieve all data in a particular region efficiently. Instead of
simply indexing geo-spatial data, TrajStore slices trajectories
into sub-trajectories according to spatial-temporal regions
and stores packed data in each region together.

An index structure called TrajTree [25] is developed to
manage trajectory data especially for retrieval tasks like k-NN
queries. Popa et al. [26] propose another kind of index
structure that is suitable for trajectory data flows and attempts
to achieve an optimal retrieval cost of spatial-temporal
queries. Another study by Ni and Ravishankar [27] present
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a parametric space indexing method that uses polynomial
approximations to index line segments in trajectory data.

VI. QUERY PROCESSING
Retrieving data from an underlying storage system is a crucial
operation. The objective of retrieval is to find appropriate
data efficiently. In the section, we summarize various kinds
of queries that are designed to retrieve trajectory data.

A. LOCATION-BASED QUERIES
A location-based query attempts to find trajectories that are
close to all query locations where the query is a small set
of locations with or without a specific order constraint. One
typical application is route recommendation for a trip to
multiple places. For example, in Fig. 4, a traveler at the source
location S wants to find a suitable path that passes query
locations A and B to the destination Chen et al. [28] explore
this kind of problem and find the k best-connected trajectories
(k-BCT) that each of which connects all query locations.

FIGURE 4. A location based query is possibly to find trajectories that
successively pass A and B. Two dotted trajectories are possible candidate
trajectories. A spatial range in a range query is denoted by a dashed
rectangle in red.

Yan et al. [29] also address an location-based searching
problemwhere importance of location points is differentiated.
Specifically, a location with a geo-tagged photograph is
more important than other locations without semantics.
The proposed query is to find the k most important
connected trajectories (k-ICT). Besides, efficient algorithms
are proposed to answer k-ICT queries, leveraging both spatial
proximity and temporal duration at each important place.

B. RANGE QUERIES
Range queries on trajectory are essential in a wide spectrum
of trajectory data mining applications. A query that specifies
a value to fall in a lower and upper boundary is regarded as
range query, e.g., finding all trajectories of a specific traveler
between 11 am and 2 pm. In Fig 4, a spatial range query is
probably to search all trajectories that pass a spatial region
denoted by a dashd rectangle.

Some studies [30], [31] investigate this kind of queries
for uncertain trajectories. Zheng et al. [30] first create

a probabilistic model to represent possible locations of a
moving object at a specific time, and design an effective index
structure to process probabilistic range queries. In another
work [31], a range query means to retrieve trajectories, each
of which is consistently covered by a given area with a high
probability during a certain period of time.

C. NEAREST NEIGHBOR (NN) QUERIES
Nearest neighbor search is another fundamental query
in spatial-temporal trajectory data mining [32], [33].
Güting et al. [32] address a problem of finding the k nearest
neighbors to a given trajectory in the trajectory database for
a specific time interval.

Another work [33] extends nearest neighbors queries to a
more realistic case, the probabilistic nearest neighbor queries,
where trajectories are uncertain. Based on representation of
uncertain trajectories as stochastic processes, several kinds of
probabilistic nearest neighbor queries with inputs of a given
trajectory and a time interval are investigated.

D. TOP-k QUERIES
KSQ [34] focuses on finding the k most similar trajectories
for a given trajectory on uncertain trajectories. The key
to a rational solution is to appropriately quantify the
(dis)similarity of two uncertain trajectories. A novel distance
metric is proposed and a scalable index structure is further
built to support trajectory data mining tasks.

E. PATTERN QUERIES
Vieira et al. [35] design a query with a given pattern,
i.e., selecting trajectories based on a specific motion pattern.
Specifically, this query typically offers a set of predicates
or constraints that should be satisfied in a specific order.
One predicate or constraint can be a range condition as
well as a nearest-neighbor condition. The crucial problem
in processing this kind of queries is to create a powerful
description that represents patterns in the query as regular
expressions.

F. AGGREGATE QUERIES
Li et al. [18] introduce another kind of queries called
trajectory aggregate queries whose querying results are
not trajectories in a trajectory archive but an aggregated
measurement. This kind of query, as a kind of function,
attempts to retrieve statistics of trajectories that traverse a
given region in a specific time interval. An example of an
aggregate query for vehicular trajectory data is to retrieve
average velocity passing a user-specific road segment.

G. OTHER APPLICATION-SPECIFIC QUERIES
There is a wide spectrum of other application-specific queries
and in the following we give a few examples.

One study [36] explores keyword queries for semantic
trajectories. It is very useful in a lot of location-based
applications, e.g., intelligent tourist guide and trip planning.
For instance, a tourist would like to have a dinner in a
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restaurant and to watch a film in a theatre. Consequently,
two keywords in italic are extracted to search reference
trajectories. The biggest difference between this kind of
queries and conventional spatial queries is that there exist
no geo-locations in this kind of queries. The work aims to
support efficient trajectory search of approximate keywords
in semantic trajectory data. Approximate keyword search is
a realistic extension of exact keyword search in cases of
miss-spelling or fuzzy search conditions.

Zheng et al. [37] introduce a special case of semantic
trajectories, called activity trajectories, and discuss a problem
of efficient search for activity trajectories. In activity
trajectories, semantic meanings that are attached to locations
is information about user activities at particular places,
e.g., sport, shopping, dining and entertaining. This work
aims to identifying trajectories with similar activities to
a given trajectory. It is also of great importance to route
recommendation and trip planning.

In contrast to conventional location-based queries in spatial
domain only, Shang et al. [38] take both spatial domain
and textual domain into consideration in a query, i.e., input
information in a query contains a set of locations specified by
users as well as a collection of textual attributes that explain
users’ preferences. In trip recommendation applications,
textual attributes can be, for example, a budget constraint.

Another work by Shang et al. [39] introduces another kind
of queries that consider personalized preference of individual
users. In other words, a query is specified in spatial terms as
well as user-specific significance for each sampling point in
trajectory data. In contrast to equal weight for every sample
point in trajectory data, the work allows users to differentiate
weights according to their preferences.

VII. TRAJECTORY DATA MINING TASKS
Trajectory data mining tasks are classified into several
categories according to type of each task.

A. PATTERN MINING
Pattern mining is to analyze mobility patterns of a moving
object or multiple moving objects together. There are various
types of patterns, such as gathering/group patterns [40]–[42],
sequential patterns [43] and periodic patterns [44], [45].

Regarding each trajectory as a sequence, a sequential
pattern is often defined as a subsequence that at least δ
trajectories share the subsequence, where δ is a user-specific
threshold. Zheng et al. [41] address a problem of mining
sequential patterns in semantic trajectories, leveraging a
two-step procedure, SPLITTER, to discover fined-grained
sequential patterns. SPLITTER first retrieves a collection of
coarse patterns by grouping similar places together and then
derives fine-grained patterns by splitting a coarse pattern in a
top-down manner.

A periodic pattern is another common trajectory pattern
which is significant to understand behavior of moving
objects. Li et al. [44], [45] address a problem of mining
periodicity. The work solves two crucial sub-problems of

detecting periods and mining periodic movement behavior
based on reference locations and probabilistic models,
respectively.

B. CLUSTERING
A branch of research [46]–[48] considers a problem of
trajectory clustering. It is useful to cluster trajectories into
groups with similar movement patterns.

TODMIS [47] is a general framework for mining
communities from multiple sources of trajectories. Groups
of moving objects are identified based on trajectory-related
information (e.g., spatial dispersion, temporal duration,
movement velocity) as well as semantic meaning of
locations.

Liu et al. [48] address a problem of identifying hot
spots of moving vehicles, which is essentially a clustering
problem. Since hot spots can be interpreted as areas of high
crowdness of vehicles, clustering is a promising method to
solve the problem. In contrast to conventional density-based
clustering, the work employs a mobility-based clustering,
whose rationale is a simple observation that a vehicle of high
mobility (speed) probably implies a low crowdness and vice
versa. The mobility-based clustering is less sensitive than the
density-based clustering to the size of trajectory dataset.

C. CLASSIFICATION
Classification of trajectories is to build a model on training
data and then to apply the trained model to predict the
labels of test trajectories. Patel et al. [49] focus on a
classification problem and introduce duration information
to boost prediction accuracy. The method incorporates not
only spatial information, e.g., spatial distribution, shapes
of trajectories but also duration information as features for
classification, as duration information greatly contributes
to differentiating moving objects that travel at different
velocities.

D. KNOWLEDGE DISCOVERY
Besides, sometimes we can benefit from trajectory data
from knowledge that discovered in trajectory data mining.
Yuan et al. [50], [51] focus on discovering regions of different
functions in a city. The knowledge can help citizens to make
decisions, e.g., whether to invest in real estate. Another two
studies [52], [53] pay attention to an event detection problem
from different aspects. Detected events are other kinds of
valuable knowledge.

VIII. PRIVACY PROTECTION
There exist many privacy-preserving solutions [54]–[57] in
trajectory data mining techniques. It is a challenging problem
to support trajectory data mining as well as protecting privacy
of users.

Andrienko et al. [54] employ a privacy-respectful manner
that transforms original geo-referenced data to trajectories in
an abstract semantic space upon which trajectory data are
processed further.
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The objective of SmartTrace [55] is to find the most
similar trajectories with a given query trajectory. The method
attempts to perform a distributed similarity measure where
users are not necessary to upload their data and thus protects
their sensitive geo-locations.

Another work by Pelekis et al. [56] facilitates privacy-aware
sharing of mobility data and develops a trajectory engine to
provide restricted access to trajectory database.

Kong et al. [57] introduce a homomorphic encryption
scheme to ensure privacy-preserving for trajectory recovery
in a crowdsourcing manner.

IX. APPLICATIONS OF TRAJECTORY DATA MINING
A wide spectrum of applications are driven by trajectory
data mining. In the section, we classify these applications
into following six types. We then introduce each kind of
applications through a few examples.

A. PATH DISCOVERY
Path discovery is one of the most common applications of
trajectory data mining. It is extremely important to find
the most suitable path in many application scenarios. Exact
meaning of the word ‘‘suitable’’ depends on applications.
It can be the fastest, the shortest, the most popular, and so
on. A lot of research papers [58]–[63] in the field have been
published.

Path discovery, also called route discovery, is to find at
least one path that satisfy a predefined objective given a
source and a destination. Routes must be derived based on
a specific road network. Furthermore, geographical locations
in numerical style in trajectories should be matched to a map
in order to derive candidate paths or path segments. Historical
trajectories on the road network provide valuable intelligence
to estimate, compare and even construct candidate routes.
The fastest path problem is a modification of the shortest

path problem. It can be solved by setting edge costs to
be time-related factors, e.g., travel time, instead of road
distances. However, sometimes the problem is generalized to
multiple destinations [58]. The objective is to minimize the
cost of a combination of destinations.

When planning a trip in an unfamiliar area, people
usually try to find the most frequent path between two
locations [59]. Furthermore, in a more realistic scenario [61],
an problem is possible to find the most frequent path in a
certain time period, i.e., given a time period T , a source vs
and a destination vd , searching the most frequent path
during T . Apart from time period constraints, Wei et al. [60]
further consider a situation of uncertain trajectories, where
trajectories are generated at a very low sampling rate due to
multiple reasons, i.e., hardware limitations, privacy concerns,
energy constraints. In Fig. 5, a trajectory is generated by
sampling at a low frequency with only S,A,B,D as sample
points. The movement between A and B are uncertain and
there are various routes, e.g., colored lines in Fig. 5.

Generally speaking, the most frequent paths outperform
the fastest paths or the shortest paths since the frequent ones

FIGURE 5. An example of uncertain trajectories. A trajectory from S to D
is generated at a relatively low sampling rate and only two points A and B
are sampled. Movement between A and B is uncertain.

reflect common routing preferences of previous travelers.
It also helps to reduce the risk of failed paths which are
possibly unpaved, dangerous or blocked by a recent road
work.

In terms of public transportation, people’s real demand for
public transportation are employed to identify and optimize
existing flawed bus routes, thus improving utilization
efficiency of public transportation [62].

To take into account various driving preferences,
Dai et al. [63] propose a recommendation system that chooses
different routes for drivers with different driving preferences.
This kind of personalized route recommendation avoids flaws
of previous unique recommendation and improves quality of
user satisfaction.

B. LOCATION/DESTINATION PREDICTION
Location based services (LBSs), also called location-aware
services, are increasingly beneficial to people in urban
areas. It has been revealed that human mobility is
extraordinary regular and thus predictable. Many location
based applications require location prediction or destination
prediction to send advertisements to targeted consumers, to
recommend tourist spots or restaurants, or to set destinations
in navigation systems.

Destination prediction is closely related to path discovery.
If an ongoing trip matches part of a frequent route in a dataset
of historical trajectories, the destination of the frequent route
is possibly the destination of the ongoing trip. However,
there exist a few constraints in real world scenarios. Research
examples are stated as follows.

Xue et al. [64], [65] point out a data sparsity problem,
which indicates that available trajectories are too few to cover
all possible trajectories. To tackle the data sparsity problem,
all trajectories are decomposed into sub-trajectories, and
then synthesized trajectories are generated by connecting
sub-trajectories together. An expanded set of trajectories that
can support destination prediction is exponentially increased
by this method. In this paper, privacy protection is also
considered to protect sensitive location information of users.
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Noulas et al. [66] focus on a problem of predicting the
next place that a user will visit, by exploring human mobility
patterns. A large amount of check-in data are utilized to study
humanmovement with a qualitative representation. Then a set
of features which are corresponding to potential factors that
may drive movement of users are extracted.

Apart from mobility patterns of individual users, another
study [67] further thinks about social conformity of users,
i.e., one’s movement is influenced by others’. Both regularity
and conformity are considered to improve the predictive
power. Moreover, heterogeneous mobility datasets e.g., GPS
trajectories, cellular tower data, WiFi signals, smart card
transactions, check-in locations from online social networks
instead of a single type of trajectories are introduced to boost
prediction performance.

C. MOVEMENT BEHAVIOR ANALYSIS
Trajectory data provide a lot of opportunities to analyze
movement behavior of moving objects [68]–[73]. Discovery
of movement patterns is crucial for understanding human
behavior. One important challenge in this topic is to extract
high-level semantics of behavior, i.e., inferring underlying
purposes or roles of moving objects.

Renso et al. [68] propose an approach to understand
behavior of people who move in a geographical context
by extracting mobility behavioral patterns. Then, human
behavior is inferred from these patterns which aremined from
trajectory data.

Predicting human behavior accurately under emergency is
a crucial issue for disaster alarming, disaster management,
disaster relief and societal reconstruction after disasters.
Song et al. [69] analyze emergency behavior of human beings
and their mobility patterns after a big nuclear accident in
Japan, leveraging a large human mobility database. It is
proved that emergency behavior after disasters sometimes
correlates with their normal mobility patterns. Furthermore,
several impacting factors, e.g., social relationship, intensity
of a disaster, damage level, new reporting, population
flow, are investigated and thus a predictive model
is derived.

Another study [70] addresses a problem of detecting
roles of moving objects from trajectory data. It is assumed
that the intrinsic structure, i.e., the distribution of behavior,
characterizes each role. Consequently, the role of a moving
object can be identified by exploring structures of trajectories.

Human mobility behavior can be studied from spatial,
temporal and social aspects. Gao et al. [71] present a
comprehensive analysis of temporal effects in modeling
mobility behavior. It has been studied that human mobility
exhibits strong temporal cyclic patterns in the period of hour,
day or week.

Liu et al. [72] propose a method to model trajectories in
terms of user decision on visiting a point of interest (POI)
and conduct rationality analysis upon trajectory behavior.
Rationality of trajectory behavior is explored through several
impacting factors.

Another recent work [73] explores individual human
mobility patterns by studying a large number of anonymous
position data from mobile phone users and reveals a
high degree of temporal and spatial regularity in human
trajectories.

D. GROUP BEHAVIOR ANALYSIS
Moving objects, especially people and animals, sometimes
tend to form groups or clusters due to their social behavior.
For instance, movement of a person is affected by not
only personal activities, but also social ties with that of the
groups he belongs to. Besides, a gathering pattern, as a novel
modeling of trajectory patterns, describes movement pattern
of a group of moving objects. Examples include celebrations,
parades, traffic congestion, large-scale business promotions,
protests, etc. The topic of mining gathering patterns or group
patterns has attracted a lot of research attention [40]–[42],
[74], [75]. Informally, a gathering in reality indicates an
unusual or significant event.

Zheng et al. [40] introduce a gathering pattern generated by
a dense and continuing group of moving objects. Gathering
removes requirement for coherent membership in traditional
group patterns (e.g., flock, convoy and swarm), leading to a
general membership that allows moving objects to enter or
leave its group anytime. An extension [41] derives an efficient
online discovery approach, i.e., in an incremental manner to
incorporating newly generated trajectory data.

Another study [42] also aims at efficiently discovering
moving objects which move together. A group is defined
as a cluster that at least m moving objects being densely
connected for at least a certain duration of time. It is very
different from gathering meaning aforementioned. Besides,
a sampling-independent approach is proposed to avoid flaws
of sampling dependent ones, e.g., convoy, swarm.

Gupta et al. [74] first address a problem of efficiently
modeling individual and group behavior and then present
a simulation framework that simulates people’s movement
behavior in order to generate spatio-temporal movement data.
The simulation is of great significance since a large amount of
movement data in public domain are limited and unavailable
in reality.

A recent study [75] is to detect and analyze moving
dynamic spatio-temporal regions and their mobility in
large sensor datasets. This kind of region often implies
locally intense areas of precipitation, anomalous sea surface
temperature readings, and locally high levels of water
pollution, etc. It can also be regarded asmining group patterns
of a phenomenon.

E. URBAN SERVICE
Knowledge discoveredwith trajectory datamining techniques
helps to improve quality of life in urban areas from several
aspects [50], [51], [76]–[79].

Through analyzing a large scale of trajectory data collected
from electronic vehicles, Li et al. [76] solve a challenging
question of how to strategically deploy charging stations and
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charging points, thus minimizing average time to the nearest
charging station and average waiting time for an available
charging point.

Inferring road maps from large-scale GPS traces are
highly promising and attractive, since building maps
from geographical surveys are expensive and infrequent.
Liu et al. [77] address a problem of map inference in a
practical setting, i.e., GPS traces has very low resolution and
sampling frequency. Several techniques for map inference
from sparse data are investigated and extensively evaluated.

Traffic volume estimation is a primary task in many
applications, such as risk analysis, quality of service, location
ranking. A recent study [78] aims to estimate traffic volume
for pedestrians within closed environments. Knowledge
on people’s presence provides a valuable opportunity for
improving infrastructure, e.g., locations of information desks,
shops or toilets, path-widths of corridors in a stadium.

Parking service is of great importance to citizens in
urban areas. Parking places (especially on-street parking) are
usually unavailable in existing electronic maps. iPark [79]
aims to enable parking search applications and to provide
complete parking information, i.e., annotating an existing
map with parking zones based on trajectory data of vehicles.

A developed city naturally has different functional regions,
e.g., residential areas, business districts, and educational
areas. The knowledge is highly valuable to both citizens and
urban planners. People living a city need the knowledge to
assist their decision on buying or renting a house, choosing a
job. Meanwhile, the knowledge helps urban planners to make
decisions on future development of the city and to estimate
effects of previous policies. Yuan et al. [50], [51] address a
problem of discovering regions of different functions in a city
based on a large scale of trajectory data. A topic model based
approach has been proposed to cluster segmented regions into
functional zones, where a region is regarded as a document
and a function as a topic.

F. MAKING SENSE OF TRAJECTORIES
Raw trajectory data which are in the form of sequence of
geographical locations and timestamps fail to make sense
to people without semantic description. There exist a great
many studies [7], [80]–[83] to facilitate interpretation of raw
trajectory data.

Unlike semantic trajectory that cannot express movement
properties of moving objects, e.g., overspeed, stopover,
Su et al. [7] propose a partition-and-summarization approach
that automatically generates a short human-readable text
to describe a trajectory. The approach not only extends
expressivity of traditional semantic trajectories but also
avoids a challenging problem of storage, processing and
transmission of large volume of semantic trajectories. A raw
trajectory data is first segmented according to behavior of
a moving object, and then characteristics of each trajectory
segmentation are summarized by short textual description.
Furthermore, a proto system named STMaker [80] based on
this idea is implemented.

It is certainly worth noting that semantic meaning
of locations and short textual messages collected by
social media services provide an unprecedented opportunity
to interpret raw trajectory data. TOPTRAC [81] aims
to detect latent topic in trajectory data. Specifically,
the approach not only finds semantic regions with a
coherent topic but also extracts mobility patterns of human
beings between semantic regions. Similarly, Lu et al. [83]
employ a clustering-based approach to discover semantic
regions.

A lot of emerging location-aware applications require a
semantic notation of a location point, e.g., ‘‘home’’, ‘‘work’’,
instead of latitude and longitude coordinates. Lv et al. [82]
propose a method of automatically discovering personal
semantic places (i.e., both a physical location and semantic
meaning of the location).

X. OPEN ISSUES
In spite of its various applications, trajectory data mining
techniques must be improved from many aspects. We offer
a few open issues in the following. First, although current
trajectory data mining techniques help to analyze behavior
of moving objects, we have limited understanding of
root causes of such interesting behavior at all. Second,
current privacy-preserving methods are far from enough.
Privacy-preserving is of great importance to trajectory data
sharing and publication. Third, it is possible to extract
much more value if trajectory data are combined with other
sources of data, e.g., healthcare data. For instance, analyzing
correlation between one’s historical trajectories and his or her
illness may provide clues for causes of the illness.

XI. CONCLUSION
Trajectory data mining is beneficial to individual citizens.
One can understand his or her movement behavior better
through analyzing historical trajectories. Besides, trajectory
data mining provides plenty of convenience to the public,
e.g., route recommendation, real-time traffic information
publication by transport agencies. However, people suffer
from privacy breaches if their trajectories are collected
and utilized inappropriately. Moreover, people are usually
disturbed by commercial advertisements which are possibly
pushed in the name of personalized services.

For the government and some organizations, trajectory
data mining helps to reduce cost of supervision and
management. In urban areas, trajectory data mining from
vehicle trajectories provides an efficient and scalable method
to monitor traffic condition of the whole city. Another
example is to record illegal or irregular behavior which
is probably valuable to ascertain responsibilities later. For
example, overspeed can be inferred from trajectories. This
evidence is valuable especially in roads without roadside
cameras. Similarly, commercial organizations expect to cut
down their costs in virtue of trajectory data mining. For
example, RFID data, as a special kind of trajectories, indeed
help to manage commodity stocks.
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Location acquisition technologies generate huge amount of
trajectory data. Trajectory data which track traces of moving
objects is typically represented by a sequence of timestamped
geographical locations. A large amount of applications are
created upon mining trajectory data. The survey reviews
an extensive collection of existing studies in the proposed
framework of trajectory data mining.
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