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Traffic Flow Forecasting for Urban Work Zones

Yi Hou, Praveen Edara, Member, IEEE, and Carlos Sun

Abstract—None of numerous existing traffic flow forecasting
models focus on work zones. Work zone events create conditions
that are different from both normal operating conditions and
incident conditions. In this paper, four models were developed for
forecasting traffic flow for planned work zone events. The four
models are random forest, regression tree, multilayer feedforward
neural network, and nonparametric regression. Both long-term
and short-term traffic flow forecasting applications were inves-
tigated. Long-term forecast involves forecasting 24 h in advance
using historical traffic data, and short-term forecasts involves
forecasting 1 h and 45, 30, and 15 min in advance using real-time
temporal and spatial traffic data. Models were evaluated using
data from work zone events on two types of roadways, a freeway,
i.e., I-270, and a signalized arterial, i.e., MO-141, in St. Louis, MO,
USA. The results showed that the random forest model yielded
the most accurate long-term and short-term work zone traffic
flow forecasts. For freeway data, the most influential variables
were the latest interval’s look-back traffic flows at the upstream,
downstream, and current locations. For arterial data, the most
influential variables were the traffic flows from the three look-back
intervals at the current location only.

Index Terms—Intelligent transportation system (ITS), neural
network, nonparametric regression, random forest, regression
tree, traffic flow forecasting, work zones.

I. BACKGROUND

SIGNIFICANT type of congestion in urban areas is
recurrent, occurring at bottlenecks where demand signif-
icantly exceeds capacity during peak hours of travel. Given the
high frequency and severity of bottlenecks in major urban areas,
it is easy to understand why most of the traffic flow forecasting
research has focused on recurrent congestion. Nonrecurring
causes of congestion such as those resulting from work zones,
special events, or incidents are also significant contributors
of congestion. According to the U.S. Department of Energy
[1], work zones are accountable for approximately 24% of the
nonrecurring delay experienced by motorists. In recent years,
intelligent transportation systems (ITS) have been deployed in
work zones to improve traffic flow and safety. Traffic Manage-
ment Centers (TMCs) have deployed ITS technologies such
as dynamic message signs, variable speed limits (VSLs), and
queue warning systems. Accurate traffic flow forecasts are
necessary for the scheduling and operation of work zones.
Scheduling tools use traffic flow during different times of day
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as input in determining the least impactful times for closing
lanes. Long-term forecasts are usually sufficient for work zone
scheduling applications. The use of ITS in work zones for active
traffic control, not just traveler information, has increased in
recent years. An example is the use of VSL systems that change
speed limits based on traffic flow inside and upstream from
a work zone. Such a system operates in real time and relies
on traffic flow data measured from traffic sensors. A proactive
VSL system that can anticipate traffic flow conditions in the
near future and adjust speed limits before the flow deteriorates
is more valuable than a reactive system that relies on past flow
values alone. Ramp metering, hard shoulder running, and other
applications are also being deployed at work zones and can all
benefit from accurate short-term traffic flow forecasts. There is
an abundance of traffic flow forecasting models from previous
research. However, few studies have focused on the impact
of dynamic variation of demand and capacity resulting from
work zones. The presence of a work zone and its characteristics
such as the type of work, number of closed lanes, reduced lane
width, and other variables not only affect roadway capacity
but also travel demand. This underresearched topic of traffic
flow forecasting for work zones is discussed in this paper.
Four models were developed for forecasting traffic flow for
planned work zone events. The four models were the following:
multilayer feedforward neural network, nonparametric regres-
sion, regression tree, and random forest. Both long-term and
short-term traffic flow forecasting were investigated. Long-term
prediction allows TMC to provide traffic operation plan before
work zone is deployed. The short-term prediction allows real-
time traffic control in work zone. While long-term forecast was
made 24 h in advance using historical traffic data, short-term
forecasts were made 1 h and 45, 30, and 15 min in advance
using real-time temporal and spatial traffic data. The proposed
models were evaluated using urban work zone data on two types
of roadways, a freeway, i.e., [-270, and a signalized arterial, i.e.,
MO-141, in St. Louis, MO, USA. These data were collected
from June 2012 to September 2013.

II. LITERATURE

As already mentioned, existing research on traffic flow
forecasting primarily focused on non-work-zone conditions. A
review of this literature and the rationale for the four models
chosen for work zone flow forecasting are presented here. Time
series analyses have been traditionally used for forecasting
traffic flows. A great majority of time series approaches are
univariate in nature. Univariate time series models use only
historical traffic flow data from the location of interest to predict
future traffic flow at the same location. The family of autore-
gressive integrated moving average (ARIMA) models was the
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most extensively applied time series model form [2], [3], [4].
Other time series models included nonparametric regression
[S], [6], [7], local linear regression [8], and Kalman filtering
[91, [10].

Multivariate time series models were later developed to
take into account both temporal and spatial traffic flow in-
formation into forecasting. Williams [11] developed a mul-
tivariate ARIMA model that included upstream traffic flow
data. Stathopoulos and Karlaftis [12] proposed a multivariate
time series state-space model that used traffic flow data from
an upstream detector and found that the model resulted in
higher prediction accuracy than univariate time series models.
Kamarianakis and Prastacos [13] proposed the space-time
ARIMA models to predict traffic flow in an urban area.

Another major class of traffic flow forecasting models was
the artificial neural network. A large number of neural networks
ranging from static to dynamic structures were deployed, in-
cluding multilayer feedforward [14]-[19], radial basis function
[20], [21], time delayed [22]-[26], and recurrent [27], [28].

Recently, Sun et al. [29] and Sun and Xu [30] have pro-
posed Bayesian network approaches to forecasting traffic flow
on a link using spatial traffic flow data from adjacent road
links. Zhang and Ye [31] proposed a fuzzy logic system to
improve traffic flow prediction accuracy. Min and Wynter [32]
developed an extended time-series-based method that incorpo-
rated temporal and spatial interactions. Pan et al. [33] used a
stochastic cell transmission framework to predict short-term
traffic flow by considering the spatial-temporal correlation in
the network. Sun et al. [34] conducted research on network-
scale traffic modeling and forecasting with graphic lasso and
neural networks. Huang and Sun [35] applied kernel regression
with sparse metric learning to forecast short-term traffic flow.

From the reviewed literature, nearest neighbor nonparamet-
ric regression [5], [6], [7] and multilayer feedforward neural
network [14]-[19] models were selected for application to
work zone flow forecasting. Two other models that have not
been used in previous flow forecasting research, i.e., regression
tree and random forest, were proposed for the first time here.
Regression tree [36] has emerged as one of the most popular
methods for both classification and regression. By performing a
binary split on input variables, it can classify data into patterns.
It can also simultaneously treat a combination of numeric
and categorical variables. A regression tree’s intuitive model
structure allows for robust interpretation of results. Random
forest [37] is a powerful tool for data mining and machine
learning and has been implemented in a variety of disciplines.
It is an ensemble learning method that combines a large group
of regression trees. The main idea behind ensemble methods
is to build a strong prediction model by combining a large
group of weak models. Unlike some data mining methods
that lack good model interpretation capabilities because they
are seen as “black boxes,” the prediction process of random
forest can be intuitively interpreted by estimating predictor
importance. Random forest is robust to noise and outliers, a
common characteristic in traffic flow data obtained from traffic
Sensors.

The remainder of this paper is organized as follows. In
Section III, the methodology is introduced. The fundamental
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Fig. 1. Regression tree structure.

theory behind the four methods is offered. The measures of ef-
fectiveness to compare the performance of the methods are also
presented. In Section IV, data collection, experimental design,
and the study findings are described. Both long-term and short-
term forecasting applications are discussed. The conclusion is
drawn in the final section.

III. METHODOLOGY

Here, the following notations are used to describe the four
methods used in this paper: h: hour of day; d: day of the week;
m: month of the year; wt: type of work zone; l;st,1: total number
of lanes; [cjoseq: Nnumber of lanes closed; sl: work zone speed
limit; bl: work zone begin log on roadways; dur: work zone
duration; and len: work zone length.

A. Regression Tree and Random Forest

A regression tree is similar to a classification tree or a
decision tree [36]. It is constructed by a sequence of binary
splits of training set X into terminal nodes, as shown in Fig. 1.
Each terminal node is assigned an output y(¢), the predicted
traffic flow.

The tree construction process revolves around three steps:
1) the selection of the splitting rules; 2) the criterion to stop
splitting and declare a terminal node; 3) the assignment of
a value y(t) to each terminal node. At each node split, a
question, “Is x; > a?,” is asked, where x; is one of the predictor
variables in {h, d, liotal, M, Wt, lclosed S, I, bl, dur, len}, and a is
a threshold value. The binary answer to the question is used to
split the node. The purpose of the binary split at each node in
a regression tree is to reduce the overall resubstitution estimate
of prediction error. Resubstitution is synonymous with training.
The resubstitution estimate, i.e., R(t), of prediction error of
node ¢ is often measured by the mean squared error of the node
subset X;. It is formulated as [36]

R(t) = Z(yti —) (D
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where NV, is the size of node ¢, y; is the traffic flow of the
1th data point falling into node ¢, and ¥, is the average of
traffic flows of subset falling into node . The best predictor
variables z* and threshold value a* that split node ¢ are selected
by decreasing R(t) the most. For any split of node ¢ into two
descendant nodes ¢y and ¢y, the decrease of R(t) is

AR(t) = R(t) — R(tL) — R(tr). (2)

By adopting a stop-splitting rule, a node is declared as the
terminal node if node size IN; < Npin. Breiman et al. [36]
suggested N, for regression tree to be 5. The node assign-
ment value, i.e., y(t), can be easily obtained by averaging the
response values of the terminal subset X;.

A drawback associated with regression tree is high variance.
Bagging or bootstrap aggregating is an approach to reduce
the variance of an estimated prediction function. The essen-
tial idea of bagging is to build a large group of regression
trees and average the results produced by each tree. Bagging
performs particularly well for high-variance and low-bias pro-
cedures. Regression trees generated in bagging are identically
distributed. Suppose K trees are generated in bagging with
positive pairwise correlation p, and each with variance 0. The
variance of the average is

Var(p) = po? + QGQ. 3)
K
With the increase inf(, the second term approaches zero, but
the first term remains, and the pairwise correlation of bagged
trees limits the benefit of averaging. In order to reduce the
correlation between trees, random selection of the predictor
variables is performed at each node split during the tree growing
process. A combination of regression trees built through this
process is called a random forest [37].
The random forest algorithm for regression applications is
described as [38] follows.

1. Fork=1to K:

a. Draw a bootstrap sample from the original training
data set.

b. Grow a regression tree T}, with the bootstrapped data
set by recursively repeating the following steps for
each node until the minimum node size that is set by
user is reached.

i. Randomly select m predictors from {h, d, liotal, M,
W, lelosed, S1, bl, dur, len}.

ii. By using the same node splitting rule that is intro-
duced in regression tree, select the predictor variable
among m predictor variables that makes the best split
to split the node into two descendant nodes.

2. Output a collection of trees {7} } k-
3. To make a prediction for a new data point

Wm=ime 4
Y Ko o

To predict a test data case, data are pushed down all the
regression trees. Each tree will produce a predicted traffic flow.
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The end result is the average of the predicted traffic flows
of all trees. Breiman [37] recommended using m = p/3 and
minimum node size of 5 for regression applications. He pre-
sented two reasons for using bagging. First, the use of random
features improves the accuracy. Second, bagging allows for the
continuous estimation of error of the “combined ensemble of
trees” [37]. The error estimate is defined as the “error rate of the
out-of-bag (OOB) classifier on the training set” [37]. The OOB
estimate is similar to the N-fold cross-validation [36]. Thus,
random forest can be fit in one sequence, with cross-validation
being performed along the way. The training can be terminated
after the OOB error stabilizes.

Random forest constructs a measure of variable importance
to help the user understand the mechanism of the prediction
process and to eliminate less important variables. The measure
is obtained by accumulating improvement in split criterion at
each split in each tree separately for each variable over all trees
in the forest [38].

The computational complexity of random forest was ex-
amined by the standard order notation. Suppose the training
data contain n data points and m attributes, according to
[39], the computational cost of building one regression tree
is O(mnlogn). If K regression trees are built in a random
forest, then the computational complexity of the random forest
is O(K (mnlogn)).

B. Multilayer Feedforward Neural Network

A neural network uses linear combinations of input vari-
ables, {h, d, liotal, M, Wt, lclosed, 81, bl, dur, len}, to derive fea-
tures that are then combined using a nonlinear function to
predict the traffic flow [38]. A multilayer feedforward neural
network consists of an input layer, i.e., Xy, an output layer,
i.e., Y, and one or more hidden layers, i.e., Z,,. The linear
combinations of input variables create new features Z,, that
form a hidden layer, since the features are not actually observed.
The traffic flow is modeled as a function of linear combinations
of Z,,. Equations (5) and (6) show how the features and the
predicted flow are calculated [38], i.e.,

Zm:O'(OZOm‘FOég;X), m=1,....M (5

Y =g(6o + 87 2) (6)

where X = {h, d, liotal, M, Wt, lclosed, 81, bl, dur, len}, and Z =
{Z1,Z5,...,Z}. The activation function o(x) is chosen as
sigmoid o(z) = 1/(1 4 exp(—x)) for this paper, since it is a
commonly used activation function [17], [18]. For regression,
the output function g(z) is usually chosen as the identity
function g(z) = .

C. Nearest Neighbor Nonparametric Regression

Nonparametric regression describes the relationship between
the independent variables and the traffic flow to be predicted,
based on observed data. The nearest neighbor nonparametric re-
gression is a pattern matching method that matches the current
observations with those in a database of historical observations.
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Given a distance measure and a forecasting procedure, the
model is presented as follows.

* Identify the k£ nearest neighbors from the training data set
for an unknown data point.

» Using the traffic flows of the selected neighbors, forecast
the traffic flow of the unknown data point.

For this paper, a common distance measure—FEuclidean
distance—is used to identify k nearest neighbors. It is formu-
lated as

)

where x; and x}, are independent variables of two data points.
The forecast of traffic flow for the unknown data point can be
calculated by the weighted inverse of distance as follows [6]:

()

where ¢ is the predicted traffic flow, y; is the traffic flow of
the ith nearest neighbor, and D); is the distance between the ith
nearest neighbor and the unknown data point.

D. Measures of Effectiveness

Performance of machine learning methods is typically eval-
vated using error measures. The four models were evaluated
using three common measures of effectiveness: root-mean-
square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE). They are formulated as

)
1 N
MAE:N;m—m (10)
1~ Jvi — 3
MAPE = — - = 11
NZ m (11)

i=1

where v; is the observed traffic flow, 7; is the predicted or fore-
casted traffic flow, and [V is the total number of observations.

IV. EXPERIMENTAL DESIGN AND RESULTS
A. Data Collection

In this paper, detailed urban work zone and traffic flow
data were collected on two different types of roadways in St.
Louis. One is a segment of [-270 freeway between MO-370 and
MO-367, and the other is a segment of MO-141 between
Clayton Rd. and I-55, an urban signalized arterial. I-270 is the
busiest freeway in the metropolitan St. Louis area with up to
180 000 vehicles per day. The length of the I-270 segment
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Fig. 2. 1-270 and MO-141 study segments. (a) Study segment of I-270.
(b) Study segment of MO-141.

is approximately 12 mi, and the free-flow travel time along
this segment is approximately 11 min. Eight detectors are
located along this stretch of 1-270. The segment of MO-141
is approximately 17 mi long. Free-flow travel time for this
stretch is approximately 23 min. There are 16 detectors along
the segment. Fig. 2 depicts the geometric characteristics and
locations of detectors for both roadway segments. Traffic flow
data were collected in half-minute resolutions by detectors 24 h
a day for 15 months from June 2012 to September 2013. A
total of 69 work zones on I-270 and 92 work zones on MO-141
were deployed during the data collection period. Detailed work
zone data such as work zone type, number of lanes closed,
speed limit, starting location of work zone, duration, and work
zone length were retrieved from Missouri Department of Trans-
portation database. Since the goal of this paper was to predict
work zone traffic demand, the traffic flows located between 1
and 3 mi upstream of work zone taper were used as dependent
variables for model development.
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TABLE 1
SUMMARY OF LONG-TERM PREDICTION RESULTS
FOR THE (a) [-270 AND (b) MO-141 DATA SETS

(a)

RMSE MAE MAPE

Baseline Predictor 3122 149.6 9.37%
Regression Tree 279.7 143.1 8.98%
Random Forest 231.5 119.8 7.70%
Neural Network 235.9 141.0 8.95%

Note: The prediction accuracy for baseline predictor only shows

those that can be predicted. 1042 out of 3957 observations could
not be predicted.

(b)

RMSE MAE MAPE

Baseline Predictor 140.6 73.6 17.95%
Regression Tree 152.1 77.2 17.57%
Random Forest 1024 57.0 14.06 %
Neural Network 111.0 68.6 21.07%

Note: The prediction accuracy for baseline predictor only shows
those that can be predicted. 1146 out of 2341 observations could
not be predicted.

B. Long-Term Traffic Demand Prediction

Multilayer feedforward neural network, regression tree, and
random forest were implemented for long-term traffic predic-
tion. The nearest neighbor nonparametric regression was not
used for long-term prediction since the data consisted of several
categorical variables. Long-term prediction provides prediction
for a time horizon of 24 h based on historical traffic data. Eleven
variables that are relevant to work zone traffic demand were
chosen as predictors for the long-term traffic demand models.
They are hour of the day, day of the week, month of the
year, total number of lanes, number of closed lanes, work
zone type, speed limit, direction, work zone begin log, work
zone duration, and work zone length. Some of these variables,
such as the work zone length and number of closed lanes, are
commonly used in work zone capacity estimation models [40].
Traffic flows were aggregated into 1-h intervals, since hourly
flow is the most commonly used traffic flow parameter. For both
the I-270 and MO-141 data sets, 60% of the data were randomly
selected as training data and the rest as testing data. Separate
models were built for freeway (I-270) and signalized urban
arterial (MO-141).

Using the experience of other researchers along with trial-
and-error processes, the best values for model parameters
were determined for all proposed models. For the multilayer
feedforward neural network, network structures of single and
multiple hidden layers were tried. Backpropagation algorithm
with Levenberg—Marquardt optimization [41] was used to train
the model. The initial scalar p is 0.001, and the decrease and
increase factors of p are 0.1 and 10. After varying the number
of hidden layers and the number of nodes, a network structure
of two hidden layers with 40 nodes in each produced the best
performance for the 1-270 data set. A network structure of one
hidden layer with 60 nodes produced the best results for the
MO-141 data set. The regression tree yielded the best model
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Fig. 3. Variable importance in long-term traffic demand prediction.

performance for both data sets when the minimum terminal
node size of 5 was used. In the process of developing random
forest, the OOB error estimate stabilized after approximately
100 trees. The minimum terminal node size of 5 and the number
of randomly selected input variables of 8 resulted in the best
model performance for both data sets. Historical average traffic
demand was used for comparison as a baseline. The historical
averages were conditioned on hour of the day, day of the week,
month of the year, total number of lanes, number of closed
lanes, work zone type, and speed limit. There were instances
when the work zone characteristics in the testing sample were
not observed in historical training data. Thus, baseline pre-
dictions for such unobserved work zone characteristics were
not made.

Table I summarizes the results from the test data for both
[-270 and MO-141. Values in bold typeface indicate the small-
est values for RMSE, MAE, and MAPE. As shown in Table I,
random forest outperformed regression tree, multilayer feed-
forward neural network, and baseline predictor for all three
measures. As expected, the ensemble method of bagging of
random forest improved model prediction accuracy over the
regression tree. The importance of random forest variables is
presented in Fig. 3. The Y'-axis in the figure is the accumulated
improvement of node purity at each split in each tree of a
variable. A high value of improvement indicates high variable
importance. Fig. 3 reveals that hour of day dominates traffic
prediction for freeway work zone. This is presumably due to the
significant variation of traffic flow during the day. Among the
work zone characteristics, work zone speed limit and length of
work zone exhibited the highest influence. The time of day vari-
able was once again the most influential for the MO-141 arterial
corridor. Total number of lanes also had a very high influence
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on the long-term forecasts. Work zone duration and length were
the most influential among all work zone characteristics.

C. Short-Term Traffic Demand Prediction

Multilayer feedforward neural network, nearest neighbor
nonparametric regression, regression tree, and random forest
models were developed for short-term traffic prediction of work
zones on the two routes. Let V(¢ +4) denote the predicted
flow for the (i + 1)th time interval in the future. For the first
prediction interval (i = 0), the flow is denoted by V(t). Let
V(t — j) denote the observed flow for the jth time interval in
the past. For example, V(¢ — 1) denotes the flow for the most
recent time interval in the past.

The future traffic flows at the location, i.e., V(t), V(t + 1),
..y V(t+b—1), are likely correlated to the traffic flows in
the recent past at the subject location, i.e., V(¢ — 1), V (¢t — 2),
..., V(t — d), the adjacent upstream location, i.e., Vys(t — 1),
Vis(t —2),. .., Vys(t — d), and the adjacent downstream loca-
tion, i.e., Vas(t — 1), Vas(t —2),. .., Vas(t — d), where b and
d parameters denote the extent of prediction and “look-back”
intervals. The short-term traffic demand prediction problem
essentially predicts the values of V(¢), V(¢ + 1), ..., V(t+
b — 1), using the time series flows from the detector of interest
and adjacent upstream and downstream detectors. In addition
to temporal and spatial traffic flow information, other relevant
factors such as hour of day, day of week, number of lanes, speed
limit, direction, and work zone begin log were also considered
in the models. Because traffic flows at more distant locations
have less influence, only observations taken from within 2 mi
of the detector of interest were used in the models. Traffic flows
were aggregated into 15-min intervals, considering that 15 min
is a reasonable amount of time for a TMC to implement a traffic
control strategy and for drivers to react to the new strategy. The
extent of prediction interval was set to 4 (b = 4). In other words,
the proposed models provide prediction of traffic demand over
15-min intervals for up to 1 h in advance.

Prediction on multiple time periods into the future enables a
wider range of applications. For signalized arterials, forecasting
1-min traffic flow may be more useful for signal timing. Thus,
for the MO-141 arterial segment, forecasts were also made
using 1-min intervals (in addition to the 15-min forecasts).
The extent of look-back was varied from one to six intervals;
adding more look-back intervals after 3 did not improve model
performance. Thus, the extent of look-back interval was set to
3. For both the I-270 and MO-141 data sets, 60% of data were
randomly selected for training and the rest for testing.

Multilayer feedforward neural networks with single and
multiple hidden layers were tried. Backpropagation algorithm
with Levenberg—Marquardt optimization [41] with the same
parameters used for long-term forecasting was used to train the
model. A network of two hidden layers with 40 nodes in the
first hidden layer and 20 nodes in the second produced the best
results for 1-270, whereas two hidden layers with 40 nodes in
the first hidden layer and ten nodes in the second produced the
best results for MO-141. The best results for the nonparametric
model for I-270 and MO-141 were obtained when the numbers
of nearest neighbors were 9 and 7, respectively. A minimum
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TABLE 1I
SUMMARY OF 15-Min TRAFFIC FLOW PREDICTION RESULTS
FOR THE (a) [-270 AND (b) MO-141 DATA SETS

(a)

t t+1 t+2 t+3
4 RMSE 547 79.9 102.9 126.0
Bascline MAE 382 53.5 69.5 85.9
Predictor
MAPE  10.62% 14.69%  1926%  24.07%
. RMSE 502 57.4 59.8 63.2
Refﬂfg‘:“’“ MAE  34.1 36.3 37.0 38.9
MAPE  9.62% 1042%  10.88%  11.25%
RMSE 355 39.8 40.1 435
Random =\ h g 539 25 26.1 273
Forest
MAPE  6.85% 7.25% 771% 7.96%
RMSE 397 44.4 50.0 532
Neural MAE 268 292 314 3.8
Network
MAPE  7.79% 8.68% 9.35% 9.68%
RMSE  39.8 49.8 573 64.4
Nearest =\ i\ 257 30.8 353 40
Neighbor
MAPE  7.47% 9.13% 1089%  12.74%
(b)
t t+1 t+2 t+3
. RMSE 26.9 40.9 543 67.5
Bascline g 145 23.1 31.0 39.1
Predictor
MAPE  9.17% 1624%  2224%  2921%
. RMSE 275 32.4 375 38.8
RegTrf:Z“’" MAE 142 17.9 19.7 20.1
MAPE  8.33% 11.98% 12.92% 13.48%
RMSE 205 23.1 255 283
Random /) 10.6 13 14.1 15
Forest
MAPE  6.64% 9.36% 10.18%  10.88%
RMSE 210 26.2 292 345
Neural MAE 11.8 153 17.2 198
Network
MAPE  8.32% 11.72% 13.15% 15.11%
RMSE 235 30.5 385 45.8
Nearest /2 127 16.8 20.9 249
Neighbor
MAPE  824% 11.96% 14.87% 17.70%

terminal node size of 5 yielded the best regression tree results.
For random forest, after 100 trees were built, further increases
in the number of trees did not improve model performance. The
minimum terminal node size of 5 and the number of randomly
selected input variables being 6 resulted in the best model
performance for both data sets. Instantaneous traffic demand
was used as a baseline predictor for comparison. The instanta-
neous traffic demand for short-term prediction is to use the last
measured traffic demand as a proxy for the traffic demand of
future intervals. Instantaneous traffic demand provides accurate
predictions in cases where traffic conditions change slowly over
long time periods.

Table II presents the prediction results from the test data
for both I-270 and MO-141. In the table, each “¢t,” “t + 1,”
“t +2,” and “t + 3” is a 15-min interval into the future, i.e.,
15-, 30-, 45-, and 60-min prediction intervals. The performance
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TABLE 1II
SUMMARY OF 1-Min TRAFFIC FLOW PREDICTION
RESULTS FOR THE MO-141 DATA SET

t t+1 t+2 t+3
RMSE 8.9 9.6 14.8 15.5
Baseline
Predictor MAE 42 4.5 6.6 7.5
MAPE 1347% 15.20% 18.70% 22.22%
) RMSE 8.6 9.1 9.6 10.1
RegTrf::m MAE 39 42 44 47
MAPE  12.49% 13.62% 14.36% 15.47%
RMSE 6.4 6.7 6.9 7.4
Random  MAE 30 31 33 35
orest
MAPE  9.79% 10.51% 11.28% 11.94%
RMSE 6.5 6.8 7.1 7.6
Neural
Network MAE 32 34 3.6 3.9
MAPE 12.28 12.87 14.90 15.51
RMSE 6.8 7.2 7.9 7.9
Nearest
Neighbor MAE 34 35 3.7 3.9
MAPE 13.05% 13.25% 14.11% 14.58%
TABLE 1V
COMPUTATION TIMES
Model Prediction Total
Construction  for Test Data
Regression Tree 0.62s 0.03s 0.65s
Random Forest 41.48s 0.29s 42.17s
Neural Network 111.96s 0.70s 112.66s
Nearest Neighbor NA 158.08s 158.08s

of all five predictors worsens when predicting further into the
future. Values in bold typeface indicate the smallest values
for RMSE, MAE, and MAPE. Table II shows that all the
error measures for random forest are smaller than those for
the other models for all four 15-min prediction intervals. The
performance of the baseline predictor worsens by a factor of
greater than 2 between ¢ and ¢ + 3, whereas the random forest
predictor MAPE increased slightly over 1% (I-270) and 4%
(MO-141) between t and ¢ + 3. All five predictors performed
worse on MO-141. The comparison between random forest
and regression tree error measures shows that the ensemble
method of bagging can increase prediction accuracy for the
weak model. Table III presents the 1-min traffic flow prediction
results for MO-141. Table III shows that all the error measures
for random forest are again smaller than those for the other
models for all four 1-min prediction intervals.

Since the main application of short-term traffic flow predic-
tion is for real-time traffic operation and control, the average
computation time for model construction and prediction for test
data are important.

Table IV presents the computation time for the four models
on an Intel core i3 central processing unit with 4-GB random
access memory. With the exception of the nearest neighbor
model, all other models provide predictions within 1 s. The total
computation time for random forest is lower than that for mul-
tilayer feedforward neural network and nearest neighbor non-
parametric regression, but higher than that for regression tree.
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Fig. 4. Temporal variation of predicted and observed traffic demand on I-270
for short-term prediction.
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Fig. 5. Temporal variation of predicted and observed traffic demand on
MO-141 for short-term prediction.

The work zone traffic demand of a randomly selected week-
day on each study segment was forecasted by the best per-
formed model. None of the observations on the randomly
selected weekday was used in the model training process.



1768

P 1-270 (t)

o

Z 306408

S _ 2.5E+08

2 Z 2.0E+08

5 156408

o

e .OE+

[ I A

S 0.0E+00

o

£ II23T3TTT 8588
vvvvvv T5SE2 8 =38
>%|g|g| %I 3,>%I$gg§>g.g

S>> > > S 5w % a

o 1-270 (t+1)

3

Z 256408

2 5 2.0E408

S £ 15408

E & 10E+08

g 506407 i

S 0.0E+00 L

£ SOCSRSAAGTTAEEES

= Cezl3lTTLEZEES
3535735583305 8
SoSStS! Sz 58 95

v

@ 1-270 (t+2)

3

Z 256408

S - 2.0E+08

£ £ 15£+08

£ & 1.0E+08

g 50407 I 1is

S  0.0E+00 - :

E TI95593757T58% 5
2L e P g 2 B
%l g|> Igl gl>>§%l gl§-§%§
> > > > =>>g & a

i 1-270 (t+3)

$ 30e08

£ £ 206408

5

§ & 10408 I I I

S 0.0E+00 L

Q

i $333353723838%8
Rt i
> > > >>2>20 28

wv

Fig. 6. Variable importance in short-term prediction for the I-270 data set.

Figs. 4 and 5 present the temporal variation of predicted and
observed traffic demand from 6:00 A.M. to 8:00 P.M. on a week-
day on both I-270 and MO-141, respectively. Both figures show
that the predicted values of random forest and the observed val-
ues are in close agreement for all four prediction time intervals.
The random forest’s MAPE values for this day for ¢, ¢t + 1,
t+2, and t+ 3 prediction intervals were 4.34%, 2.63%,
2.92%, and 2.70% for 1-270 and 4.20%, 5.39%, 4.89%, and
5.40% for MO-141.

The importance of variables was explored for short-term
prediction. Figs. 6 and 7 display the importance of variables in
predictions of all four time intervals for the [-270 and MO-141
data sets, respectively. Fig. 6 reveals that the most relevant
variables in short-term traffic prediction for the 1-270 data set
are the flows at one look-back interval at the location of inter-
est and the adjacent upstream and downstream locations, i.e.,
V(t—1), Vus(t — 1), and Vys(t — 1). As the forecast interval
size increased from ¢ to ¢+ 3, the importance of V(¢ — 1)
decreased, whereas the importance of hour of day variable
(Hour) increased. When forecasting flow for immediately next
time interval (i.e., t), the previous interval’s (¢t — 1) flow served
as a good proxy for the hour of day variation in flow. As the
forecast interval size increased (to ¢ + 1 and higher), this was
not the case since the previous interval became more removed
from the forecast interval, and thus, the hour of day variable
started to exhibit a higher influence as the forecast interval size
grew. The downstream flow, i.e., Vis(t — 1), became the pri-
mary variable onward, which might be indicative of congestion
spillback occurring due to downstream bottlenecks that were
felt at the current location in the future time intervals.
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Fig. 7. Variable importance in short-term prediction for the MO-141 data set.

Fig. 7 shows that the most relevant variables in short-term
traffic prediction for the MO-141 data set are the flows of
all three look-back intervals at the location of interest, i.e.,
V(t—1),V(t—2),and V(¢ — 3). Unlike the I-270 short-term
prediction, the variables exhibiting the highest influence did not
vary with the size of prediction interval. It appears that sig-
nalization reduced the influence of upstream and downstream
traffic flow values.

V. CONCLUSION

The lack of forecasting models for work zone traffic flow
motivated the research presented in this paper. To that end,
four models were developed for short-term and long-term traffic
flow forecasting for work zones. Two of the models, i.e.,
regression tree and random forest, have not been investigated
in previous traffic flow forecasting research. All three measures
of effectiveness showed that random forest outperformed all the
other models for both short-term and long-term forecasts.

Of all variables, the hour of day of the work zone was found
to have the greatest impact in the long-term flow prediction
for both freeway and signalized urban arterial. Short-term flow
forecasts for freeway work zones depended the most on the
flow values at the location of interest and at upstream and
downstream locations during the latest look-back interval, i.e.,
V(t—1), Vus(t—1), and Vgs(t—1). In contrast, the short-term
flow forecast for the arterial work zones relied the most on
the flow in the previous three look-back intervals only at the
location of interest, i.e., V(t — 1), V(¢ —2), and V(¢ — 3).
The results demonstrated that the developed work zone traffic
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flow forecast models did not find the work zone characteristics
to play as significant a role as traffic flow variables. Recall
that the training and testing samples included only work zone
data. The results, however, do not mean that separate models
are not needed for work zones. The relative importance of
the traffic flow variables, time of day, day of the week, and
other seasonality variables could be very different between
normal operations and work zones. One possible reason for
work zone characteristics not playing a significant role in the
prediction is that the traffic flow variables serve as a surrogate
for different work zone characteristics. For example, intensity
of work activity and number of closed lanes affect traffic flow.
Thus, by including traffic flow as a surrogate accounts for the
combined influence of various work zone characteristics.

A few related research topics can be explored in the future.
First, forecasting models by the type of work zone may be
developed. For example, maintenance and construction work
activities involve different intensities and durations. Thus, sep-
arate models for these two types may be warranted. Second,
the proposed models may be applied to other urban areas to
further investigate forecasting models. Third, other artificial
intelligence and advanced time-series models may be explored
in the future.
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