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A Survey of Traffic Data Visualization
Wei Chen, Fangzhou Guo, and Fei-Yue Wang, Fellow, IEEE

Abstract—Data-driven intelligent transportation systems utilize
data resources generated within intelligent systems to improve the
performance of transportation systems and provide convenient
and reliable services. Traffic data refer to datasets generated and
collected on moving vehicles and objects. Data visualization is
an efficient means to represent distributions and structures of
datasets and reveal hidden patterns in the data. This paper intro-
duces the basic concept and pipeline of traffic data visualization,
provides an overview of related data processing techniques, and
summarizes existing methods for depicting the temporal, spatial,
numerical, and categorical properties of traffic data.

Index Terms—Traffic, traffic data visualization, visual analysis,
data-driven intelligent transportation system.

I. MOTIVATION

TRAFFIC is the flux or passage of motorized vehicles, non-
motorized vehicles, and pedestrians on the road, or the

movement of passengers (e.g., metro interchanges) [1]. Traffic
can take place in urban regions, lands, seas, air, or even under-
ground. With the rapid development of transportation systems,
traffic has become a vital part of human life and significantly
influenced the quality of life. For instance, an estimated average
of 40% of the population spends at least 1 hour on the road
every day [2].

In modern cities, massive population and large number of
vehicles cause problems, like congestion, accidents and air
pollution. A number of efforts to address these problems have
been proven effective, including intelligent transportation sys-
tems (ITSs), public transportation systems, safety seat belts,
and air-bags. However, the ever-increasing number of private
cars greatly neutralizes the achievement of traffic regulation
and control. Among these solutions, ITSs are deemed attractive
because they enhance the efficiency and functionalities of trans-
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portation systems with advanced information technology [3]. In
particular, the role of data in ITS has become essential because
of the size of the collected data. The data contain information
and can also be used to generate new functions and services
in ITS [2]. A data-driven ITS allows users to interactively
utilize data resources that pertain to transportation systems, as
well as access and employ data through more convenient and
reliable services to improve the performance of transportation
systems [2].

Data visualization employs visual channels to represent
datasets [30], transforming various types of data into appro-
priate visual representations, so that data understanding and
analysis can be completed efficiently. The advantage of data
visualization is its incorporation of human capabilities into
an intuitive visual interface, thereby combining machine in-
telligence with human intelligence. Scientific visualization,
information visualization and visual analytics are three major
fields in data visualization. Scientific visualization illustrates
structures and evolutions of physical or chemical properties in
the spatial domain. Information visualization focuses on the
representation of abstract, unstructured, and high-dimensional
data, including business data, social networks data, and textual
data, among others. [31]. Iterative, interactive and dynamic
integration of human intelligence and data analysis establishes
a novel analysis strategy, namely, visual analytics [32]. Traffic
datasets are generally high-dimensional or spatial-temporal;
thus visualizing traffic data mostly employs information visu-
alization and visual analytics.

Visualization and visual analysis are important for a highly
efficient data-driven ITS. Specifically, traffic data visualization
can facilitate understanding of the behavior of moving objects
(vehicles) and discovery of traffic, social, geo-spatial, and even
economic patterns. In general, an analytic system consists of
four main components: data collection, data preprocessing, data
query and data analysis. Each component requires specialized
visualization techniques. For instance, visual data cleaning can
help the user transform data to become usable for downstream
analysis tasks [33]. Other processes such as aggregation and
clustering can also be enhanced with a visual interface [25],
[34]. A user-friendly query interface is required to retrieve the
needed data [14]. Furthermore, traffic situation monitoring and
traffic pattern recognition are widely studied for the purposes of
intelligent control and analysis [11], [35]. Considering the tasks
of existing traffic data analysis applications, the tasks of traffic
data visualization could be classified as follows:

• Visual monitoring of traffic situations Interesting
events may be hidden in traffic data such as traffic jams.
With real-time monitored data (e.g., video surveillance
in tunnels or cross-intersections), live traffic situations
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Fig. 1. Conceptual pipeline of traffic data visualization.

and comprehensive events can be observed and tracked to
understand the cause and mechanism of a traffic jam along
a long road. An example is the visual analysis system [11]
based on taxi trajectories.

• Pattern discovery and clustering An important goal
of traffic data visualization is to discover the mobility
patterns of objects and cluster these patterns. These pat-
terns reflect the characteristics of individual movements,
their evolutions as well as their associations with other
parameters. For instance, Gennady Andrienko et al. [36]
presented an interactive visual clustering method to clas-
sify trajectories of massive objects.

• Situation-aware exploration and prediction Data anal-
ysis tasks can be categorized into two classes: description
and prediction. Many analytic systems are capable of
exploring and explaining traffic situations, for example,
visually querying taxi trips in a city [14] and predicting
the trajectories of massive cars in a city [37].

• Route planning and recommendation Traffic regula-
tions and route recommendations are essential compo-
nents of ITS. Data-driven control and planning have
been proven efficient in achieving satisfactory results.
Incorporating human capabilities into the analysis process
can further improve efficiency, as demonstrated in the
visualization-assisted route recommendation system [10].

A traffic data visualization system typically contains four data
states and three process stages, as shown in the representation
of a general visualization pipeline [38] in Fig. 1. The data flow
includes four states, namely, raw data, processed data, visual
symbols and visualization. Raw data may be collected from
different data sources including video surveillance, GPS of
vehicles, and incident logs. Preprocessed data contain temporal,
spatial, spatio-temporal, and multivariate properties. Thereafter,
visual transformation is performed to convert data into appro-
priately designed and placed visual symbols, such as line chart,
bar chart, dot chart, and star plots, among others. Finally, the
visual symbols and metaphors are mapped with various visual
channels (color, transparency, texture, etc.) and composed into
various visualization forms, such as colored image, infograph-
ics, animation, and video. The user is allowed to modulate the
parameters in each stage using the user interface. In the data
preprocessing stage, the user can optimize the preprocessing

functions by iteratively adjusting the parameters. In the visual
transformation stage, the user can transform and filter the data
to determine the shown data. In the visual mapping stage, the
user can manipulate visual mapping types and interact with
visual symbols. In this way, the patterns and knowledge hidden
in the data can be easily understood and discovered.

The remainder of the text is organized as follows: Details
of traffic data and preprocessing techniques are presented in
Section II. Section III elaborates on the various visualization
techniques in terms of time, locations, and other aggregated or
deducted variables. Section IV shows how visualization can be
combined with analysis techniques to enhance understanding
and mining of traffic data. Finally, this survey is concluded and
future works are highlight in Section V.

II. TRAFFIC DATA PREPROCESS

Different types of traffic data demand different visualization
and analysis methods. Real-captured data are typically raw,
erroneous, and contain uncertainties, outliers, missing values,
or mismatched items. Raw data must be processed for visual-
ization and analysis.

A. Traffic Data

Traffic data refer to the datasets generated and collected
by sensors in traffic vehicles or monitors installed along the
roads. Examples of traffic data include GPS data of vehicles,
GSM locations or cell station records of human mobility,
and video/image/counting records of surveillance devices. The
working modes of sensors can be roughly categorized into the
following three classes [39], [40]:

• Location-Based. The location of an object is recorded
upon entering the sensor range. For instance, in a cross-
intersection, a video monitoring device captures the loca-
tion and movement orientation of a pedestrian if and only
if he/she passes by the monitor.

• Activity-Based. When an object carries out a certain
activity, related or derived information is recorded. For
instance, the location of a GSM user is automatically
recorded when he/she makes a call.

• Device-based. A device carried by an object actively
records and sends back positional and other information.
For instance, a taxi with a GPS device delivers a signal to
the data center every 20 seconds.

Trajectory is the most common form of traffic data. A
trajectory contains temporal information, which records the
timeline of movement, and spatial information, which records
positions at each time point. Previous studies have focuses on
the visualization and analysis of trajectories, including [4], [7],
[13], [18], [23], [41]–[43]. Other types of information accompa-
nying trajectories can also be utilized [39], including movement
directions, change of direction [23], movement speed [11], and
change of speed [13].

Incident logs are based on events and contain such attributes
as event type, event location and other information on related
entities.
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TABLE I
EXAMPLES OF TRAFFIC DATA. HERE, N, C, AND T STAND FOR NUMERICAL, CATEGORICAL, AND TEXTUAL, RESPECTIVELY

In addition to the aforementioned two data types, other multi-
variate data can be derived from trajectories or incident logs, or
recorded by special sensors, including, velocity, direction, and
acceleration. Table I summarizes the existing datasets and their
respective attributes.

B. Data Preprocessing

A sequence of data preprocessing operations is required
before data analysis; such operations include data cleaning, data
matching, data organization and data aggregation.

• Data cleaning Data errors, outliers, and conflicting values
of the raw data must be cleaned [33]. In [7], a step called
GPS data cleaning was applied to remove GPS errors and
filter out useless records.

A typical data cleaning process has three phases: audit-
ing data to find discrepancies, choosing transformations to
fix such discrepancies, and applying the transformations
to the dataset [44].

The first phase detects errors in the raw data.
Rahm et al. enumerated the major problems in raw

data [45], including uniqueness, referential integrity, mis-
spelling, redundancy, and contradictory values. Conven-
tional approaches to detect errors in raw data include data
profiling and data mining.

In the second phase, data transformation is carefully
designed and chosen depending on the number of data
sources and dirtiness of the data. This phase can be com-
pleted manually or automatically. For example, the user
can write custom scripts to control the whole procedure of
cleaning or use extraction/transformation/loading (ETL)
tools to transform the data.

The third phase executes transformations of datasets
and replaces dirty data with cleaned data. In traffic visual-
ization systems, cleaned data need to be processed further
to fit in the analysis tasks.

• Data matching Raw traffic data records are discrete
sample points and may not match road networks in cities.
Map matching, that is, aligning a sequence of observed
user positions with the road network on a digital map, is
an indispensable step in data preprocessing [46]. Existing
map matching algorithms can be categorized into four
classes, namely, geometric, topological, probabilistic,
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TABLE II
EXISTING MAP MATCHING ALGORITHMS

and other advanced techniques [47], as summarized in
Table II.

• Data organization The preprocessed data need to be
organized in a database or data warehouse. A well-studied
database should support interactive query and visualiza-
tion of queried results, and should be compatible with
data of moving objects such as trajectories. Indexing
methods fall into two classes. The first class includes
multidimensional index methods, such as 3D R-Tree [58],
STR-Tree [59], and HR-Tree [60]. The second class
includes indexing methods that divide space into grids
and build a time index for each grid, such as SETI [61]
and MTSB-Tree [62]. Data cube is another standard data
structure that provides fast responses to data queries [63].
Recently, Nanocubes [64] have been developed to support
quick indexing over time and aggregation queries over
spatial regions. Several relational databases, such as Post-
Gis (extension of PostgreSQL) [65] and MySQL Spatial
(extension of MySQL) [66] provide spatial extensions for
spatial data.

• Data aggregation Traffic datasets commonly contain spa-
tial and temporal properties and span a large scale of space
and time. Data aggregation [25] is effective in reducing
the data size and provides convenience in subsequent
analysis. The basic aggregation operations for traffic data
are spatial (S), temporal (T ), directional (D), and at-
tribute (A)-related aggregations. Their combinations gen-
erate different types of aggregation: S × T aggregation,
S × T ×A aggregation [25], [67], S × S × T × T ag-
gregation [68], S × T ×D aggregation [69], and S × S
aggregation [69]. S aggregation is mainly done by cal-
culating the density of data points inside each grid of an
area. T aggregation is employed to show changes along
the time axis and is accomplished by merging data points
in each time interval. The most common visualization
corresponding to T aggregation is time histogram. S × T
aggregation simply computes the density at consecutive
time intervals [69]. The time-varying density can be vi-
sualized through an animated density map. S × T ×A
aggregation [67] firstly groups spatial records on the basis
of regularly sampled grids and then aggregating temporal
attributes in each grid. S × S × T × T aggregation com-
bines aggregations based on start location, end location,
start time, and end time [68]. It counts the number of
entities that move from one place to another in a period

Fig. 2. Line charts representing linear time [14]. It shows tips per trip for taxi
trips originating in different regions in the period of May 1, 2011 to May 7,
2011. Each line represents tips per trip in one region.

of time. S × T ×D aggregation not only aggregates data
by space and time, but also aggregates by movement
direction [69]. S × S aggregation groups trajectories or
movements that have the same start locations and the
same end locations [69]. Different aggregation strategies
meet different requirements of analysis tasks.

III. VISUALIZATION OF TRAFFIC DATA

Traffic data contain multiple variables, of which the most
important ones are time and space. This section describes the
visualization techniques specifically designed for the time, the
locations, spatial-temporal information, and other properties in
traffic data.

A. Visualization of Time

Generally, time can be classified into linear time, periodic
time and branching time. Time-oriented visualization [70] em-
phasizes on the display of trend, periodicity, and abnormality of
data along the time axis.

1) Linear Time: Linear time regards time as a linear field
from a starting time point to an ending time point. It is the
most widely used time representation and yields a sequence of
timeline visualization techniques. For instance, in a line chart,
the time is represented along the X-axis, and another variate is
represented along the Y -axis. Fig. 2 shows the tips per taxi trip
on a given date in New York City, USA [14]. Line charts are
easy to read but they are not the right choice to show multiple
variables due to the clutter problem.

Stacked graph [71] is another popular visual form. It can be
used to show multiple quantities that are orderly accumulated
along the Y -axis. The quantity of each variate at a certain time
point is depicted along the length of a streaming chart. In this
way, not only the individual quantity of each variate, but also its
ratio to the sum of all variates can be disclosed. Among variants
of stacked graph layout algorithms, ThemeRiver [72] is one of
the best-known. It can create smooth, symmetrical and artistic
stacked graph. In [23], ThemeRiver is employed to show the
traffic volume at a road intersection, as shown in Fig. 17(b).
Stacked graphs have no clutter problem but need more space
than line charts.

Linear time is capable of expressing how traffic data vary
with time and indicating peaks or valleys of variable evolutions
over time.

2) Periodic Time: Many recursive processes occur in our
natural world. Many of them are relevant to time, e.g., iterations
of seasons, weeks, and days. A common way of visualizing
periodicity is to use a radial layout, such as the visualization
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Fig. 3. Visualizing periodic time in radial layout [11]. Time in a day is shown
on the circular axis and each ring represents a day. The sector color represents
a selected traffic quantity with the color map shown on the right.

Fig. 4. A storyline of The Matrix shows how characters interact with each
other in the movie [74].

of traffic information in Fig. 3 [11]. In the figure, each circle
represents a day in a week, and each sector of a circle represents
an hour. The advantage of a radial layout is it easily shows
periodic patterns and the disadvantage is that it has low space
efficiency.

3) Branching Time: An evolving event or story has many
branching structures. An event or story can be described in
many aspects. Visualizing branching time is commonly ac-
complished with a visual metaphor, called Storylines [73] (see
Fig. 4), which can depict the progress, joining, branching, and
disappearance of a specific event. To the best of our knowledge,
traffic data has not yet been visualized through branching time.

B. Visualization of Spatial Properties

Location is the main spatial property of traffic data. It refers
to where actions, incidents, or events happen. A series of loca-
tions distributed along the time axis forms a trajectory. Based
on the aggregation level of location information, visualization
of spatial properties can be categorized into three classes:
point-based visualization (no aggregation), line-based visual-
ization (first-order aggregation), and region-based visualization
(second-order aggregation).

1) Point-Based Visualization: Point-based visualization
considers samples of traffic information as individual discrete
dots and presents these samples by leveraging point-relevant

Fig. 5. (a) Train status at 9:48 a.m. in France [20], in which the visualization
is based on a railway map and the running trains are labeled by colored points
at their locations. (b) and (c) Boston subway status [21] is created based on
Boston metro map: (b) the positions of running trains at 1:12 p.m. Monday;
(c) an overview of the running status of the metro for one day.

visual channels. Most traffic data are movement records of cars,
planes, and pedestrians, thus this technique can intuitively show
the position of objects at a certain time point. With the use of
animation techniques, trajectories of objects can be observed
straightforward.

In Trains of Data [20] project, the visualization represents
each train as a moving dot, which runs in a 2D map. One
example is the train transportation status at 9:48 a.m. in France,
as shown in Fig. 5(a). Specifically, the dot size indicates the
passenger number, and the dot color indicates whether the train
is delayed, that is, green means on time and red means delayed.

Mike Barry and Brian Card [21] visualized the Boston sub-
way system with the use of points to represent running trains
in the map, and line charts to show the timing of trains [see
Fig. 5(b) and (c)]. An overview of the subway system can be
clearly obtained by examining these two figures.



CHEN et al.: SURVEY OF TRAFFIC DATA VISUALIZATION 2975

Fig. 6. Visualization of hot spots in a city through the heatmap technique
[75]. The red regions represent high volume of traffic, whereas the blue regions
indicate low volume of traffic.

Dot-based representation typically places dots individually.
The advantage of this method is that it enables the user to
observe the states of every objects in the data. But when the data
contains a large number of objects, the visualization becomes
unclear and hard to understand. One can use a heatmap to show
the integrated quantity of a large scale of objects in a map. For
instance, the hot regions or roads in a traffic network can be
depicted with a color-coded heatmap [75], as shown in Fig. 6.
Kernel density estimation (KDE) is a commonly used algorithm
for generating a heatmap. Network KDE (NKDE) is a modified
KDE algorithm that is capable of characterizing certain point
events along road networks [76], [77].

The advantage of point-based visualization is that it can show
the distribution of vehicles. It can help the user explore where
the busiest region of a city is but is inefficient in showing
continuous information, such as how many vehicles travel from
one location to another.

2) Line-Based Visualization: Line-based visualization tech-
niques are designed to display traffic trajectories, roadmaps in
a large-scale region, or traffic flow in a distributed network.
Extended analysis on the basis of trajectories has proven to be
useful in many applications, like semantic mining of trajectories
[9], trajectory clustering [36], and route recommendation [10].

Conventionally, a trajectory is represented by a line or a curve
and is scaled or colored with respect to its properties. The user
can interactively navigate, select, and even analyze the set of
trajectories. In [5], Hurter et al. presented an interactive system
that analyzes aircraft trajectories over France. Each trajectory is
represented by a line that connects the initial point and the last
point, as shown in Fig. 7(a).

To overcome the complexity of trajectories, they can be
transformed into other forms or simplified using topological
and geometric algorithms. For instance, Tarik Crnovrsanin et al.
[78] proposed to transform trajectories from the given spatial
layout into an abstract space. This approach can effectively
reveal patterns such as hazard prevention, migration patterns,
and other behaviours (see Fig. 7). In the given spatial map,
temporal information of entities is difficult to show especially
for a considerable number of entities. In the abstract space,
however, spatial information is shown on the Y -axis and tem-

Fig. 7. (a) Aircraft trajectories over France [75]. (b) By mapping trajec-
tories from absolute coordinates to relative coordinates, eight patterns are
discovered [78].

Fig. 8. (a) Line-based visualization of the immigration information in the
USA [79]; (b) edge bundling result generated by [80]; (c) edge bundling result
generated by [81].

poral information is shown on the X-axis; therefore, patterns
become clearer and more comprehensive. In Fig. 7(b), eight
relationships among trajectories and associated transformed
representations, namely, spatial concentration, co-incidence,
concurrence, trends, fluctuation, convergence, meet, and diver-
gence are defined.

When the number of trajectories becomes large, heavy visual
clutter appears, making the visualization result unclear and
disorderly. Many approaches have been developed to solve this
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Fig. 9. The major immigration flows are visualized with arrows [82].

problem; the most effective of which is edge bundling [79].
Edge bundling transforms and groups similar edges into bun-
dles. After twisting and clustering the original edges, the clutter
is reduced. Fig. 8(a) shows the visualization of the immigration
information among different states in the USA. Fig. 8(b) shows
the result generated by [80] through a geometry-based edge
bundling algorithm. Fig. 8(c) shows the result generated using
a skeleton-based edge bundling algorithm [81].

Although edge bundling can reduce the clutter problem,
recognizing the actual direction of connection between two
locations becomes difficult. Guo et al. [82] presented an alter-
native solution that can extract major flow patterns in massive
flow data without bundling or altering paths. It estimates the
flow density for each pair of locations by a vector-based density
model. Then a subset of smoothed paths is selected to represent
the major flow in the flow map. Fig. 9 shows the immigration
flows generated by this approach.

KDE can be applied to trajectories as well. In [4], [41],
[83], density maps of trajectories are visualized (Fig. 10).
Fig. 10(a) is the edge KDE result of the USA air traffic. Instead
of twisting and clustering edges as edge bundling does, this
technique uses color to indicate the density of trajectories:
darker regions mean larger edge density. Fig. 10(b) shows the
density map of vessel traffic around Rotterdam.

Line-based visualization can handle the task of analyzing
trajectories. However, when the number of trajectories grows,
the clutter problem becomes severe. Region-based visualization
can be used to reduce the complexity of the visualization result.

3) Region-Based Visualization: Region-based visualization
shows the traffic situation based on individual regions. Typi-
cally, traffic data are aggregated into regions based on predeter-
mined rules. For instance, the traffic flow of cars is summarized
along the streets, or the demographics are collected based on the
administrative divisions. Zeng et al. applied region-based visu-
alization to visualize the interchange patterns among different
regions of a city. A radial metaphor is designed to represent
the interchanges of one region to other regions, and other
visual channels are employed to represent additional properties
(see Fig. 11).

Region-based techniques have advantages in revealing macro
patterns in traffic data. For example, when analyzing the pattern
of vehicular movements from one region to another, region-

Fig. 10. Density maps of trajectories: (a) air traffic in the USA [83]; (b) vessel
traffic around Rotterdam [4].

Fig. 11. A region-based visualization example: interchange patterns of metro
systems in city scale, regional scale and road network scale [35].

based techniques work perfectly. However, they are inadequate
for analyzing micro patterns, such as the patterns of a single
vehicle. Level of detail techniques can be used to combine
information at different scales and study both macro and micro
patterns.

C. Spatio-Temporal Visualization

Space-Time-Cube (STC) [84] is a widely studied method
for data with spatio-temporal attributes. In an STC (Fig. 12),
a 3D trajectory is visualized in a 3D coordinate system, in
which the plane consisting of the X-axis and the Y -axis is used
for mapping spatial geographic information, and the Z-axis
represents the time axis. In this way, spatio-temporal changes
in an arbitrary object are depicted in a canonical space. The
STC method has many variants, which are introduced in the
following subsection.

D. Visualization of Multiple Properties

In many situations, traffic data contain various attributes in
addition to spatial and temporal information. These attributes
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Fig. 12. Space-time-cube: both spatial information and temporal information
are visualized in a cube [84]. The X-axis and Y -axis represent spatial informa-
tion, whereas the Z-axis represents temporal information.

or properties can be roughly divided into three classes:

• Numerical Properties
Numerical properties are continuous variables that rep-

resent quantitative values of data objects. Each numerical
property describes one particular aspect of the data ob-
ject, such as velocity, acceleration, weight, etc. Most of
these properties are time variant, and thus the aforemen-
tioned time-oriented visualization techniques should be
employed. However, in many applications, the user may
focus on statistics of these properties. In this case, the
histogram is a good choice for visualization.

• Categorical Properties
Categorical properties are discrete variables that de-

scribe the state of data objects. Directions, vehicle types
and incident types are representative categorical proper-
ties. The simplest visualization for categorical properties
is color mapping, which assigns a particular color to
represent a value. A popular color map scheme in terms of
information visualization is the ColorBrewer system [85].

• Textual Properties
Textual properties refer to words, lexical information,

or logs that describe extra information about the traffic,
such as the vehicle names involved in an incident, point
of interests, and so on. These properties often contain
semantic information and are essential for analyzing
and explaining traffic situations. Text-based visualization
techniques like TagCloud [86] and Wordle [87] can be
employed to show a set of words. Some studies provide
instructions on how to layout multiple labels on a 2D map
effectively [88], [89].

To depict both spatio-temporal information and related prop-
erties, the standard STC can be enhanced. Representative ones
include the GeoTime [43] and stacking-based STC [13]. The
former adds objects and events at the corresponding points in
the STC, as shown in Fig. 13(a). Specifically, each event is
added to the track and placed around a corresponding time node
to identify the event sender. Dotted lines are used to connect
related objects and events. The latter method stacks multiple
trajectories along the Z-axis, and visualizes them as stacked
bands to depict velocity [see Fig. 13(b)].

Fig. 13. Two variants of STC that illustrate related properties of traffic data:
(a) GeoTime [43] in which events, objects, and activities are represented as
the 3-D trajectories; (b) stack-based visualization [13], in which trajectories are
stacked together.

Fig. 14. Two examples of PCP in traffic visualization: (a) visualizing traffic
incident data [26]; (b) showing the possibility of each street belonging to a
particular topic represented by an axis [9].

Many traffic data visualization applications [26] employ
parallel coordinate plot (PCP) [90] to show multiple attributes
[Fig. 14(a)]. A parallel coordinate plot uses multiple parallel co-
ordinate axes, each of which represents an attribute. Each data
object is mapped into a set of connected lines that pass through
all axes. In [9], PCP is used to help the user interactively
discover knowledge from probability distributions over topics
after clustering trajectories into different topics [Fig. 14(b)].
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Fig. 15. Visualization of multivariate traffic information: (a) the distribution of taxis [11]; (b) taxi trips and statistical information [10]; (c) interchange patterns
in movement data [35].

TABLE III
EXISTING VISUAL ANALYTICS SYSTEMS FOR TRAFFIC DATA

We can enhance conventional multivariate data visualiza-
tion techniques with specially designed visual encoding and
interaction schemes. For instance, a so-called “similarity lens”
[Fig. 15(a)] was invented to show the distribution of taxis, aver-
age speed of taxis and pick-up/drop-off activities on roads [11].
Statistics of attributes of taxis (e.g., speed and vehicle density),
value of attributes at each time, and the Euclidean distance
against the average are simultaneously illustrated. Likewise, a
trip view [Fig. 15(b)] is designed to show temporal, spatial, sta-
tistical and other attributes of taxi trajectory data [10]. Temporal
statistical information is contained in the circle outside the area.
Spatial information is shown by the map at the center of the
illustration. The start and end time points of trips are shown by
circular traces around the map. Fig. 15(c) shows an interchange
circos diagram (ICD) [35] showing junction node, flow volume,
direction of flow and statistics of flow volume.

IV. VISUAL ANALYSIS OF TRAFFIC DATA

A large number of visual analytics tools and applications
have been developed for traffic data. They cover situation-aware
exploration and prediction [5], [14], [75], [91], [94], pattern
discovery and clustering [9], [23], [34]–[36], [68], [92], and
traffic situation monitoring [7], [11], [24], [26], [27], [93]. In
this section, we present representative works, and summarize
these works in Table III.

A. Situation-Aware Exploration and Prediction

Querying unstructured data, especially moving objects is
challenging for traditional data cube-based query model. Many
studies focuses on new query models for fast response to query
on traffic data and interfaces for exploring traffic information.
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Fig. 16. A visual analytics system that supports the exploration of sparse
traffic trajectory data [18]. Three views, namely, the map view, the pixel map
view, and the linked view are provided.

Ferreira et al. proposed a new model that allows the user to
visually query taxi trips [14]. In this model, three types of query
constraints exist: spatial, temporal and attribute constraints.
These constraints are visually specified and modulated through
five views. The map view displays the query results and speci-
fies the spatial constraints. The time selection widget specifies
the temporal constraints. The data summary view shows the
information associated with the results of the queries. The tool
bar provides several operations (e.g., pickups, drop-offs, etc.).
Multiple coordinated views specify both temporal and attribute
constraints.

Wang et al. presented a system that evaluates the real traffic
situations based on taxi trajectory data [91]. A road-based
query model and a hash-based data structure are proposed to
support dynamic query for trajectories. The presented system
effectively fulfills the tasks of data-driven road evaluation.

Visual analytics for intelligent transportation (VAIT) is a
system that visualizes traffic data and supports analytics queries
through an interactive visual interface [75]. Twelve queries
are defined for traffic data. The analysis procedure includes
three steps: overview, distribution exploration and evolution
exploration. Thereafter, query and recheck are performed to
investigate the findings.

Wang et al. recently presented a visual analytics system to
explore sparse traffic data [18] (see Fig. 16). Local anima-
tion and aggregation techniques are employed to address the
uncertainty problem in sparse data. The analysis procedure
is composed of three steps, namely, global exploration, cell

exploration and correlation exploration, which are facilitated by
three views. With the help of an integrated visual interface, the
user can easily observe the hidden macro-patterns.

Aurisano et al. [95] presented a user-driven visual analytics
system on multivariate and spatio-temporal incident reporting
data on the Lord’s Resistance Army activity in Central Africa.
The data used in this system are similar to traffic incident
data. The proposed prediction method is also feasible for traffic
incident prediction scenarios. Andrienko et al. [96] developed
interactive visual interfaces that represent the interdependencies
between traffic intensities and speeds in an abstracted road
network, which can be utilized for forecasting the expectable
normal traffic situation at a given moment, and its development
over time.

B. Pattern Discovery and Clustering

Detecting patterns in object movement and clustering the
trajectories can be greatly enhanced by visualization and inter-
actions.

Schreck et al. proposed a visual-interactive monitoring and
control framework [34] that extends the Kohonen feature map
(or self-organizing map, SOM). One distinctive feature of this
work is the combination of automatic data analysis and hu-
man expert supervision. The user can monitor and control the
SOM clustering process and obtain appropriate cluster results.
Although the data used in this system are not traffic data, the
clustering method can be used for clustering traffic trajectories.

In [36], [92], the OPTICS algorithm, a member of the
DBSCAN family, is applied to cluster the trajectory data. The
user can refine the clustering result by interactive visualization
and manipulation, such as excluding one or several subclusters
from a cluster, making a new cluster, or dividing a subcluster
into two or more smaller subclusters. This approach is more
efficient than traditional approaches because it incorporates
human intelligence in the analysis loop.

Zeng et al. presented a suite of visual analysis techniques
to study interchange patterns in movement data [35]. ICD is
designed to examine interchange patterns [see Fig. 15(c)]. It
supports depiction in three scales, namely, city, region and road
network scales (see Fig. 11). At the road network scale, each
ICD represents a road junction. At the city/region scale, each
ICD represents a partitioned area.

Triple Perspective Visual Trajectory Analytics (TripVista) is
an interactive visual analytics system for exploring and ana-
lyzing complex traffic trajectory data [23]. The system mainly
consists of three views: traffic, ThemeRiver, and PCP, as shown
in Fig. 17. The traffic view displays spatial information. The
ThemeRiver view displays directional information, and the PCP
view displays multidimensional data. Utilizing these views, the
user can effectively detect regular and irregular traffic flow
patterns.

Visual Analytics of Taxi Topic is a visual analytics system
that discovers the movement patterns in taxi trajectories [9].
It integrates four views: taxi topic maps, street cloud, PCP
and topic routes. The main contribution of this system is the
transformation of taxi trajectories into documents and the use of
latent Dirichlet allocation (LDA) to find hidden semantics from



2980 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 6, DECEMBER 2015

Fig. 17. TripVista is a visual analytics system for finding traffic flow patterns at a road intersection [23].

Fig. 18. ICE is a visually assisted application for studying transportation
incident data [26].

the documents, namely, taxi topics that disclose interesting
movement patterns of taxis.

C. Visual Monitoring of Traffic Situations

Traffic monitoring focuses on investigating traffic incidents.
Datasets used by traffic monitoring systems either have incident
records or not. For the latter, incidents can be extracted from
raw data.

Incident Cluster Explorer (ICE) is an application that studies
transportation incident datasets [26] (Fig. 18). Geospatial visu-
alization (map), histogram, 2D plots, and PCP are integrated
in the application. Incidents are visualized on the map in two
modes: icon mode, which employs colored dots, and heatmap
mode, which depicts density distribution.

The Traffic Origins system is designed to perform traffic
incident analysis [27]. Animation transition techniques are
employed to emphasize the start and the end of an incident.
When an incident occurs, a circle appears and surrounds the
site of the incident. When an incident ends, the corresponding
circle fades out progressively. The color of each road indicates
the average speed of vehicles on it.

AIVis [24] is a system that monitors traffic situations in road
tunnels. The incidents are detected automatically from video
sequences in real time. As shown in Fig. 19, the system com-
prise spatialCtemporal views, including future view, present
view, history view, temporal overview, and additional windows.
In particular, the present view is depicted in a tunnel shape
and shows special locations, such as positions of cameras and
emergency exists in tunnels. The history view shows incidents
that occurred in the last three minutes, and the future view
predicts incidents that may happen in a minute.

T-Watcher is an interactive visual analytics system for mon-
itoring and analyzing complex traffic situations in big cities
[11]. The monitoring task is accomplished in three views:
region view, road view, and vehicle view (Fig. 20). Each view
corresponds to a specially designed fingerprint that allows the
user to complete a specialized task.

The transportation incident management explorer (TIME) is
a system that combines temporal and spatial data with incident
logs [93]. TIME integrates six visualizations, namely, com-
munications, variable message signs, responders, lane status,
traffic speed and traffic volumes.

Wang et al. presented a visual analytics system for traffic
jams [7]. Traffic jams are automatically detected by setting a
threshold for road speed. The system integrates five views: the
spatial view presents an overview of traffic jam; the road speed
view shows the speed patterns of each road; the graph list view
shows the list of the propagation graphs; the graph projection
view shows the topological relationships of propagation graphs;
and the multifaceted filter view provides a dynamic query tool
for querying propagation graphs, as shown in Fig. 21.

V. CONCLUSION

Large data brings numerous opportunities and challenges
to the field of traffic data analysis. Traffic data visualization
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Fig. 19. AIVis is a system that monitors traffic situation in road tunnels [24].

Fig. 20. T-Watcher system monitors and analyzes traffic by means of three levels of fingerprints [11].

performs a key function in addressing the problems arising from
large-scale, multi-modal, and unstructured data. This paper
provides an overview of relevant visualization techniques and
visual analysis systems in the context of traffic analysis, and
presents the common data flow in traffic data visualization.
According to the characteristics of traffic data, visualization
techniques for traffic analysis are presented in four aspects:
temporal, spatial, spatio-temporal, and multi-variable. Existing
traffic visualization applications and visual analytics systems
are presented based on the analysis tasks.

Performing analysis tasks in real-time is difficult when the
data size if large. Few works supporting visual analysis of big
traffic data are available. Ferreira et al. [14] presented a system
that supports visual exploration of huge spatio-temporal data.
However, developments do not stop in the design of such a

system. Thus, the analysis in situation-aware and immersive
environments are promising directions.

Visual analytics provides a comprehensible way to analyze
data and consequently significantly improves the efficiency
and accuracy of the analysis. In the context of ITS, visual
analytics can accomplish various tasks, such as route planning,
traffic jam detection, accident monitoring and flow patterns
recognition. However, most existing traffic visualization and
visual analytics systems employ offline data. Designing and
implementing systems using on-line and streaming data may
be a potential research direction.

Benefiting from the development and popularization of sen-
sor technology, data sources related to traffic data are currently
growing in number. For instance, video surveillance [24] has
been combined with road incident data for better monitoring.
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Fig. 21. A visual analytics system for analyzing traffic jams comprising five views: (a) spatial view; (b) road speed view; (c) graph list view; (d) multifaceted
filter view; (e) graph projection view [7].

We believe that visual analysis of heterogeneous data from
different sources (e.g., social media) will be the next research
topic on data-driven ITS.

Another interesting direction is the visualization and visual
analytics of social transportation, with an aim of collecting,
analyzing, and utilizing data from cyber, physical, and social
spaces for ITS.
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